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Abstract
Background: Although the number of circulating immune cells is subject to high-amplitude
circadian rhythms, the underlying mechanisms are not fully understood.

Methods: To determine whether intact CLOCK protein is required for the circadian changes in
peripheral blood cells, we examined circulating white (WBC) and red (RBC) blood cells in
homozygous Clock mutant mice.

Results: Daytime increases in total WBC and lymphocytes were suppressed and slightly phase-
delayed along with plasma corticosterone levels in Clock mutant mice. The peak RBC rhythm was
significantly reduced and phase-advanced in the Clock mutants. Anatomical examination revealed
hemoglobin-rich, swollen red spleens in Clock mutant mice, suggesting RBC accumulation.

Conclusion: Our results suggest that endogenous clock-regulated circadian corticosterone
secretion from the adrenal gland is involved in the effect of a Clock mutation on daily profiles of
circulating WBC. However, intact CLOCK seems unnecessary for generating the rhythm of
corticosterone secretion in mice. Our results also suggest that CLOCK is involved in discharge of
RBC from the spleen.

Background
The number of circulating white blood cells (WBC)
involved in immune defense is subject to high-amplitude
circadian rhythms [1,2]. Periodic changes in the number
of leukocytes circulating in the peripheral blood might
result from several factors. These include the distribution

of circulating and marginal cell components of tissues and
organs, influx from storage sites, cell proliferation, release
of de novo cells into the circulation, and cell destruction
and removal [2]. The underlying mechanisms of circadian
changes in circulating blood cells have not been fully elu-
cidated, although the numbers of monocytes, natural
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killer (NK) cells, T and B cells vary in a circadian manner
[3-5].

Clock was the first clock gene identified in vertebrates
using N-ethyl-N-nitrosourea mutagenesis screening [6].
Clock mutants exhibit abnormally long periodicity of
behavior for the initial 5 to 15 cycles and subsequently
lose circadian rhythmicity under constant darkness,
although behavioral rhythms are completely entrained to
environmental light under a light-dark cycle [6]. However,
we reported that the long periodicity of Clock mutant mice
on a Jcl:ICR background lasts for over one month under
constant darkness [7,8]. The Clock gene encodes a basic
helix-loop-helix (bHLH)-PAS transcription factor that
plays an important role in the negative feedback loop of
the circadian clock [9,10]. Like other bHLH transcription
factors, CLOCK binds DNA and modulates transcription
following dimerization. As the Clock allele is truncated
and causes a deletion of 51 amino acids, the mutation pre-
sumably would not significantly affect the N-terminal
bHLH and PAS domains, leaving CLOCK dimerization
and DNA binding intact [9,10]. In fact, mutant CLOCK
protein can still form heterodimers with BMAL1 (a bHLH-
PAS transcription factor) that binds to DNA, but these are
deficient in transcriptional activity [9,10]. CLOCK protein
is involved in the transcriptional regulation of several cir-
cadian output genes as well as in the core circadian clock
[11,12].

To determine whether intact CLOCK protein is required
for the circadian changes in peripheral blood cells, we
examined circulating WBC and red blood cells (RBC) and
evaluated plasma levels of corticosterone (CS) in
homozygous Clock mutant mice.

Methods
Animals
Clock mutants were derived from mice supplied by J.S.
Takahashi (Northwestern University, Evanston, IL.). The
mice originally had the Clock allele on a BALB/c and
C57BL/6J background. A breeding colony was established
by further backcrossing with Jcl:ICR mice and the new
strain was subsequently maintained by interbreeding for
at least 10 generations [13]. Genotypes were determined
using PCR as described [14]. The mice were studied at 8–
10 weeks of age. Mice were housed under a 12 h light-12
h dark cycle [LD 12:12; lights on at 0:00 h]. A white fluo-
rescent lamp was used as a source of light during the day
(150–200 lux at the level of the cages).

Analysis of peripheral circulating blood cells
To determine peripheral circulating blood cells at each
time point and genotype, mice were killed by decapita-
tion, trunk blood was collected into heparinized capillary
tubes, blood cells were automatically counted (Sysmex F-

820 Blood Counter, Toa Medical Electron Inc., Japan),
and the differential was determined by Wright-Giemsa
staining followed by light microscopy.

Plasma corticosterone (CS) and erythropoietin (EPO)
To determine CS and EPO at each time point and geno-
type, mice were killed by decapitation and trunk blood
was collected into heparinized capillary tubes. Blood was
collected in the dark under a dim red lamp to avoid any
possible influence of light on the corticosterone profile
[15]. Plasma was immediately separated from blood sam-
ples by centrifugation at 3,000 rpm for 10 min at 4°C and
stored at -80°C. Mouse plasma CS and EPO levels were
determined using an EIA kit for rat CS (Diagnostic Sys-
tems Laboratories, Inc.) and an ELISA kit for mouse EPO
(R&D Systems, Minneapolis, MN), respectively.

Splenic hemoglobin (HGB) content
The spleen was homogenized in distilled water. After cen-
trifugation at 3,000 rpm for 15 min, HGB concentrations
of the supernatants were determined using the Hemo-
globin B-test Wako (Wako Pure Chemical Industries Ltd.,
Osaka, Japan).

Statistics
We used a nonlinear least-squares (NLLS) Marquardt-Lev-
enberg algorithm to fit a curve to the observations, and
determined the acrophase (the timing of the cosine maxi-
mum) of numbers of total white blood cells, lym-
phocytes, and red blood cells, hemoglobin and
corticosterone levels. We defined the function as f(x) = M
+ A cos(2p/P*(x – T)) and set the variables M (MESOR;
mean statistics of rhythm), A (Amplitude) and T (Acro-
phase) as the fit parameters. P was set at 24, because the
present study proceeded under LD 12:12. Acrophases
were compared using Welch's t-test, and p < 0.05 was con-
sidered statistically significant. All values are expressed as
means ± SEM. Scheffé's multiple comparison tests
assessed specific differences between genotypes.

Results
Figure 1A shows that the number of total WBC fluctuated
in a circadian pattern that peaked during the early morn-
ing both in wild-type and in Clock mutant mice, although
the acrophase of the rhythm was delayed from 3.7 ± 1.3 h
in wild-type mice to 5.5 ± 0.7 h in the Clock mutants. The
acrophase of the lymphocyte rhythm was also signifi-
cantly delayed from 4.9 ± 1.1 h in wild-type mice to 7.3 ±
0.5 h in the Clock mutants (Fig. 1B). The temporal pattern
of number of neutrophils in Clock mutant mice was bimo-
dal, whereas the pattern of lymphocytes was similar to
that in wild-type mice (Fig. 1C). The Clock mutation
reduced the numbers of total WBC, lymphocytes and neu-
trophils during the light period (Fig. 1A – C).
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Figure 2 shows that the plasma levels of CS fluctuated in a
circadian manner in both wild-type and Clock mutant
mice, but the acrophase significantly differed between the
genotypes (p < 0.01). In wild-type mice, plasma CS

peaked at 9.8 ± 0.4 h, just before the light-dark transition
[4]. In contrast, plasma CS levels in Clock mutant mice
peaked at 16.4 ± 0.3 h, the middle of the dark period. The
peak CS levels were similar in the two genotypes.

Figure 3A shows that the number of RBC peaked at 9.5 ±
0.3 h. just before the light-dark transition in wild-type
mice. However, the amplitude was reduced and the acro-
phase was significantly advanced to 4.5 ± 1.0 h (p < 0.05)
in Clock mutant mice (Fig. 3A). Blood levels of HGB
closely correlated with the number of RBC (Fig. 3). The
acrophase of HGB was 10.0 ± 0.4 h in wild-type mice and
4.5 ± 1.0 h in the Clock mutants (p < 0.05).

Plasma EPO levels were slightly but significantly higher in
Clock mutant (77.2 ± 0.09 pg/l) than in wild-type (68.8 ±
0.07 pg/l) mice (p < 0.01). Plasma EPO levels were not
rhythmic in either genotype (data not shown).

Anatomical examination of Clock mutant mice revealed a
swollen red spleen (Fig. 4A). The wet weight of the spleen
per body weight of Clock mutants was about 1.5-fold
greater than that of wild-type mice (p < 0.01) (Fig. 4B).
The splenic HGB content was also significantly increased
in Clock mutant mice (p < 0.01) (Fig. 4C).

Discussion
The circadian rhythm in the number of circulating blood
cells in mammals is highly regular and reproducible [16].
However, the complex nature of this regulation has pre-
vented elucidation of the underlying mechanisms of circa-
dian changes in circulating blood cells [2]. The present
study found that a homozygous mutation of the circadian
clock gene, Clock, affects the circadian fluctuation of circu-
lating WBC and RBC in mice. This finding suggests that

Circadian variations in plasma corticosterone (CS) levels in Clock mutant miceFigure 2
Circadian variations in plasma corticosterone (CS) 
levels in Clock mutant mice. Open and filled circles indi-
cate values from wild-type and Clock mutant mice, respec-
tively. Open and solid bars represent lights on and off, 
respectively. Values represent means ± SEM (n = 4). Signifi-
cant differences between genotypes are shown as **P < 0.01.

Circadian variations in peripheral circulatingleukocytes in Clock mutant miceFigure 1
Circadian variations in peripheral circulatingleukocytes in Clock mutant mice. (A) Total number of white blood 
cells (WBC), (B) number of lymphocytes, (C) number of neutrophils. Open and filled circles, values from wild-type and Clock 
mutant mice, respectively. Open and solid bars, lights on and off, respectively. Values represent means ± SEM (n = 3). Signifi-
cant differences between genotypes are shown as *P < 0.05.
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the circadian rhythm in the number of blood cells is
dependent on core components of the circadian clock.

Steroid hormones play important roles in generating the
circadian rhythm of circulating blood cells [17]. Patients
with an adrenal insufficiency or with adrenal hyperplasia

have low and high endogenous cortisol levels together
with high and low lymphocyte counts, respectively
[18,19]. Corticosteroids cause the efflux of some lym-
phocytes from the vasculature and their retention in the
lymphatic circulation [20]. The mechanism through
which corticosteroids cause such movements may involve
the expression of cell adhesion molecules (CAMs)
[21,22]. The expression levels of leukocytes (including
lymphocytes, neutrophils, and monocytes) and of CAMs
are highest when plasma cortisol concentrations are max-
imal [23]. Interestingly, we previously demonstrated that
mRNA expression levels of ICAM1 are reduced in Clock
mutant mice [11]. The present study found that the acro-
phase of total WBC and lymphocytes numbers was
delayed for few hours in accordance with that of plasma
CS levels in Clock mutant mice. We previously reported

Swollen red spleens from Clock mutant miceFigure 4
Swollen red spleens from Clock mutant mice. (A) 
Spleens from wild-type and Clock mutant mice. (B) Graphs 
show ratio (%) of wet weight of spleen per body weight in 
wild-type and Clock mutant mice. (C) Graphs show hemo-
globin (HGB) content in wild-type and Clock mutant mice. 
Values represent means ± SEM (n = 6). **P < 0.01, significant 
difference between genotypes.

Circadian variations in peripheral circulating redblood cells (RBC) in Clock mutant miceFigure 3
Circadian variations in peripheral circulating red-
blood cells (RBC) in Clock mutant mice. (A) Number of 
RBC and (B) blood levels of hemoglobin (HGB). Open and 
filled circles, values from wild-type and Clock mutant mice, 
respectively. Open and solid bars represent lights on and off, 
respectively. Values represent means ± SEM (n = 3). **P < 
0.01, significant difference between genotypes.
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that the acrophase of other physiological parameters such
as body temperature (17.2 ± 0.2 h and 19.9 ± 0.3 h in
wild-type and Clock mutants, respectively) and spontane-
ous activity (17.5 ± 0.4 h and 19.9 ± 0.3 h in wild-type and
Clock mutants, respectively) is also delayed in Clock
mutant mice [13]. Our present results suggested that circa-
dian clock-regulated diurnal CS secretion from the adre-
nal gland is involved in the effect of the Clock gene
mutation on circadian changes in the numbers of periph-
eral circulating WBC.

The circadian fluctuation of plasma CS concentration is
blunted at low levels in Clock mutant mice with a CBA/
6CaH background under LD conditions [24]. However,
the present study identified a circadian CS rhythm in Clock
mutant mice with a Jcl:ICR background under LD condi-
tions, although the acrophase was delayed in mutant
mice. These remarkable strain differences of the effect of a
Clock gene mutation on circadian CS secretion are very
similar to those on behavior, as the circadian behavior
rhythm of homozygous Clock mutant mice is completely
abolished under constant darkness in both C57BL/6J [6]
and CBA/6CaH [25] backgrounds but maintained for at
least 2 months in the Jcl:ICR background [7]. A recent
study using the Cre-LoxP system found that CLOCK is not
essential for generating the circadian locomotor rhythm
in mice [26]. Mutant CLOCK protein might provoke gain-
of-function effects in the mutant mice, because the Clock
allele is truncated and causes a deletion of the transactiva-
tion domain, which leaves DNA binding intact. The phe-
notypic differences (such as CS rhythm, locomotor
activity [7], and metabolism [27]) between the Clock
mutant mice with different backgrounds might reflect
expression levels of the truncated CLOCK protein, which
in the Jcl:ICR background would interfere less with circa-
dian and other physiological processes. The present study
demonstrated that intact CLOCK is not essential for either
circadian CS secretion or the circadian fluctuation of cir-
culating WBC in mice, at least under an LD condition.

On the other hand, a study of blood samples withdrawn
over a period of 24 h has established a circadian rhythm
in E-rosette-forming (T) cells in vitro that persists in 4-day-
old cell cultures [28]. This finding suggests that fluctua-
tions in some lymphocyte subpopulations depend on a
cellular circadian oscillator [2]. We revealed that many cir-
cadian output genes, as well as those in the core circadian
clock, are governed by CLOCK protein at the level of tran-
scription [11]. In the present study, the circadian rhythm
of circulating neutrophils was a damped bimodal process
in Clock mutant mice, although that of lymphocytes was
only phase-delayed. Granulocytes emigrate from the
bloodstream to tissues and cannot recirculate, whereas
lymphocytes continuously recirculate from tissues
through the lymph back to the blood. Therefore, the Clock

mutation might affect the proliferation of neutrophils in
the bone marrow and/or neutrophil apoptosis in periph-
eral tissues.

We showed here that the circadian fluctuation of circulat-
ing RBC is regulated not only by the consequence of phys-
iological rhythms such as feeding and sleeping but also by
the endogenous circadian clock. The acrophase of the
diurnal RBC rhythm is near the light-dark transition in
nocturnal mice. The acrophase of circulating RBC in diur-
nally active humans is also at the time of the light-dark
transition [16]. Thus, the relationship between circulating
WBC of about 180° between circadian rhythms in diur-
nally active humans and nocturnally active rodents does
not apply to the RBC rhythm. This resembles the expres-
sion of circadian clock genes in the suprachiasmatic
nucleus (SCN), which is the master circadian pacemaker
that controls most of the physiological circadian rhythms
of mammals. The expression phase of clock genes (Per1
and Per2) in the SCN is almost identical between rodents
that are active during the night [9,10] and during the day
[29-31]. Thus, the SCN might tightly regulate the circa-
dian phase of circulating RBC in mammals, whereas the
phase of WBC seems to be affected by physiological
rhythms such as those of feeding, locomotor activity and
blood CS levels.

The amplitudes of RBC rhythms are very small and are of
interest from a physiological viewpoint [32]. Circulating
RBC numbers are determined not only by their clearance
from the peripheral circulation in the spleen and liver but
also by their production in bone marrow. Actually, circu-
lating reticulocytes have a circadian rhythm, suggesting
their circadian periodic release from the bone marrow
[16]. The primary erythropoietic regulator EPO controls
RBC production. We also found that plasma levels of EPO
were slightly but significantly increased in Clock mutant
mice throughout the day. Thus, the Clock mutation may
affect the diurnal regulation of RBC production in the
bone marrow.

The mean cell volume (MCV) of erythrocytes in the
present study did not appear to exhibit circadian rhyth-
micity or to show genotypic differences. Figure 3 shows
that HGB levels in the blood were closely correlated with
the number of RBC. These results suggest that the availa-
bility of erythropoietic iron remained intact in the Clock
mutant mice.

The lifespan of circulating RBC produced in bone marrow
is determined by their elimination from the spleen. The
RBC and HGB levels in the present study were still rhyth-
mic and phase-advanced in Clock mutant mice, although
the circadian rhythm of RBC and HGB in circulating
blood was severely damped in the mutants. Anatomical
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examination revealed swollen red spleens and a signifi-
cantly increased splenic HGB content in Clock mutant
mice. These findings suggest that the effects of the Clock
mutation on RBC rhythm results from the enhanced elim-
ination of RBC from the bloodstream and/or a dysfunc-
tion in RBC discharge from the spleen.

Our results also indicated that the Clock mutation affects
the circadian regulation of both blood CS levels and
peripheral circulating blood cells, but that intact CLOCK
is not essential to generate the rhythm. Further elucida-
tion of the functions of circadian clock genes should
reveal the underlying mechanisms of circadian changes in
mammalian immune functions.
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