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Abstract
Background: Many genes control circadian period in mice. Prior studies suggested a quantitative
trait locus (QTL) on proximal mouse chromosome 12 for interstrain differences in circadian
period. Since the B6.D2NAhrd/J strain has DBA/2 alleles for a portion of proximal chromosome 12
introgressed onto its C57BL/6J background, we hypothesized that these mice would have a shorter
circadian period than C57BL/6J mice.

Methods: We compared circadian phenotypes of B6.D2NAhrd/J and C57BL/6 mice: period of
general locomotor activity in constant dark and rest/activity pattern in alternating light and dark.
We genotyped the B6.D2NAhrd/J mice to characterize the size of the genomic insert. To aid in
identifying candidate quantitative trait genes we queried databases about the resident SNPs, whole
brain gene expression in C57BL/6J versus DBA/2J mice, and circadian patterns of gene expression.

Results: The B6.D2NAhrd/J inbred mice have a shorter circadian period of locomotor activity than
the C57BL/6J strain. Furthermore, the genomic insert is associated with another phenotype: the
mean phase of activity minimum in the dark part of a light-dark lighting cycle. It was one hour later
than in the background strain. The B6.D2NAhrd/J mice have a DBA/2J genomic insert spanning 35.4
to 41.0 megabase pairs on Chromosome 12. The insert contains 15 genes and 12 predicted genes.
In this region Ahr (arylhydrocarbon receptor) and Zfp277 (zinc finger protein 277) both contain
non-synonymous SNPs. Zfp277 also showed differential expression in whole brain and was cis-
regulated. Three genes and one predicted gene showed a circadian pattern of expression in liver,
including Zfp277.

Conclusion: We not only fine-mapped the QTL for circadian period on chromosome 12 but
found a new QTL there as well: an association with the timing of the nocturnal activity-minimum.
Candidate quantitative trait genes in this QTL are zinc finger protein 277 and arylhydrocarbon
receptor. Arylhydrocarbon receptor is structurally related to Bmal1, a canonical clock gene.

Background
Many genes control circadian period in mice [1-5]. Identi-
fication of much of the genetic underpinnings of circadian
rhythmicity and mechanisms of circadian timekeeping of

mice comes from studies using induced mutations, tar-
geted knockout mutations, transgenics, and homologies
to Drosophila clockwork [6-11]. As insight into the molec-
ular structure of mammalian clocks advanced, the extent
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of integration of the circadian clockwork with metabolism
and the cell cycle was realized [12-14].

Genetic variation in natural populations holds unique
clues to gene function. Consequently, identifying and
characterizing the molecular machinery of natural varia-
tions can open new vistas onto the molecular mecha-
nisms of complex traits like circadian rhythms. Genes that
contribute to expression of complex, multi-gene traits are
quantitative trait loci (QTL) [15].

The five studies described next suggest the presence of
QTL for interstrain differences in circadian period on
proximal mouse chromosome 12 (Chr 12). Two studies
in panels of recombinant inbred (RI) mice (the B×D RI
panel originating from a C57BL/6J × DBA/2J cross and the
C×B RI panel from a BALB/cBy × C57BL/6By cross) asso-
ciated circadian period of wheel-running with provisional
QTL [2,3,16]. Three more studies were done on F2 popu-
lations. In the first, a genomic survey of F2 offspring from
a C57BL/6J (B6) × BALB/cJ cross, Shimomura (2001)
found a QTL (Frp-3, free-running period 3) at about 46
megabase pairs (Mbp) [5]. In the second, in an F2 from CS
× B6 cross Suzuki, 2001 found a QTL for wheel-running
period near 80 Mbp [17]. Finally, in an F2 intercross of RI
mouse strains (BXD19 and CXB07) we found a QTL for
circadian period of general locomotor activity near 36
Mbp with a LOD score (a statistical estimate of whether
two loci are likely to lie near each other on a chromo-
some) greater than five. A targeted extension study con-
firmed Cplaq10 (circadian period of locomotor activity 10)
[18].

Screening B×D RI mice predicted that compared to B6
alleles, DBA/2J (D2) alleles around Cplaq10 would pro-
duce a short circadian-period phenotype [16]. To test this
and to refine the QTL mapping, we compared the pheno-
types of B6 and B6.D2NAhrd/J (AhR) strains. AhR mice
have a B6 genome except for an insert of D2 DNA span-
ning roughly 35 to 41 Mbp on Chr 12 [19]. If the AhR
mice have a different circadian period than the B6 back-
ground strain; then the small D2 insert contains a QTL for
the difference in circadian period between B6 and D2
mice.

To gain further information about a possible QTL in this
region, we also compared circadian phenotypes of B6
mice with A/J mice and the consomic strain C57BL/6J-Chr
12A/J/NaJ (C12A). The C12A strain has an entirely B6
genome except for Chr 12: the homologous Chr 12 from
the A/J inbred strain replaces it. If the C12A mice have a
different phenotype from B6, then A/J alleles on Chr 12
also associate with it.

Methods
Mice were purchased from Jackson Laboratories or bred in
house. They were acclimated under alternating 200 lux
light and dark of 12 hours each (LD 12:12) for at least two
weeks prior to the start of the study. Food (Teklad 7001
Mouse & Rat Diet 4%) and water were continuously avail-
able throughout the study. The mice assessed were 30 to
150 days old. In Experiment 1 we compared 19 B6 mice
and 30 AhR mice. In Experiment 2 we compared 23 B6
mice, nine A/J mice and 33 C12A mice. All animals were
maintained in facilities fully accredited by the Association
for the Assessment and Accreditation of Laboratory Ani-
mal Care. All research protocols and animal care were
approved by the Institutional Animal Care and Use Com-
mittee in accordance with the guidelines of the Guide for
the Care and Use of Laboratory Animals (Institute of Lab-
oratory Animal Resources, Commission on Life Sciences,
National Research Council, 1996).

Experimental housing and care
After acclimation mice were moved into LD 12:12 and
housed singly in polycarbonate cages (LXHXW: 12 × 8 × 6
in). Amount of each mouse's activity was acquired by a
passive infrared detector mounted above the cage. All test
mice were kept in a sound attenuating, ventilated room at
a constant temperature (23°C) and humidity. Sound
attenuating, opaque dividers were placed between the test
cages.

After at least two weeks in LD 12:12, the lights were turned
off at the usual time of lights-off to start two weeks of con-
stant darkness (DD). Under DD caretakers wore a Pelican
Versabrite headlamp fitted with a red safelight beam dif-
fuser. Care in the darkroom consisted of ten min per day
and each mouse was inspected for less than a minute.
Daily visits occurred at random times between 8 am and
5 pm.

Locomotor activity assessment
Daily locomotor activity of the mice was monitored with
passive infrared detectors (Ademco, Syosset, NY)
mounted over each cage. The passive infrared (ir) proxim-
ity sensor works by emitting pulses of ir light, and then
measuring the distance to objects from the flight time of
the reflected signal. Whenever the distances change, the
detector opens or closes a switch. All detectors were tested
to ensure response uniformity.

Calculating timing of nocturnal activity minimum (siesta) 
under LD 12:12
Prior to assessing the free-running period we assessed the
rest-activity patterns under an alternating light and dark
condition to determine phase angle of entrainment and
placement of the daily activity minimum during that part
of LD cycle when the mice were active.
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After at least two weeks in LD 12:12 the timing of the
siesta and the phase angle of entrainment were calculated
using the "Activity Profile" module in Clocklab (Actimet-
rics Corp, Evanston, IL) a software package for the analysis
and display of circadian activity data. Activity Profile plots
the average activity for specified dates as a function of cir-
cadian time. We grouped activity events into thirty minute
bins and calculated the mean activity during the last eight
days under LD 12:12. We assessed the phase of minimum
activity during the dark part of the cycle.

Calculating circadian period of locomotor activity
After at least two weeks in DD the circadian period was
calculated from the last ten contiguous days of actigraphic
records using the X2 periodogram analysis in Clocklab.
The mean activity was calculated using the "Activity Pro-
file" module.

Statistical treatment of data
Experiment 1: For activity in LD 12:12, B6 and AhR mice
were compared in t-tests for mean activity, phase angle of
entrainment, and phase of the siesta. For activity in DD,
the two strains were similarly compared for circadian
period and mean activity. The effect size of the QTL was
calculated from the t-test [20].

Experiment 2: The circadian periods of B6, C12A and A/J
mice were compared in a one-way ANOVA with post-hoc
Tukey t-test.

Non-synonymous coding sequence polymorphisms 
(ncSNP) in the QTL interval
The mouse phenome SNP [21] and the Ensembl Mouse
dbSNP 126/Sanger [22] databases were both queried
within the QTL interval for the most complete collection
of known single nucleotide polymorphisms (SNP) that
cause non-synonymous coding sequence variants
between the B6 and D2 strains.

DNA isolation and genotyping microsatellite 
polymorphisms
DNA isolation and genotyping microsatellite polymor-
phisms and SNPs were performed by Harlan GenScreen™
(Indianapolis, IN). Mice were genotyped at the following
microsatellite and SNP markers (NCBI Build 36.1 Mbp
position): D12Mit242 (30.8 Mbp), D12Mit60 (35.4
Mbp), D12Mit153 (35.8 Mbp), rs29213248 (39.3 Mbp),
rs29155751 (40.0 Mbp), rs29161407 (40.9 Mbp) and
D12Mit2 (42.5 Mbp) [23]. Results of genotyping and
characterizing mice for circadian period were combined to
identify the Chr 12 region holding the QTL for circadian
period.

Expression Analysis: B6 vs D2
A whole brain database (B6 vs D2) was examined for
probe-sets mapping to Chr 12 that were differentially
expressed between B6 and D2 mice. Two expression data-
bases were developed in the laboratory of Robert Hitze-
mann at Oregon Health Sciences University. The
development of the databases is described in Hofstetter
[24]. Briefly, mice were maintained in LD 12:12 (lights off
at 7 pm). Whole brains were taken between 10 AM and 2
PM. The B6 vs D2 database used 6 male mice of each
strain. The B6D2F2 database used brains from 56 mice (29
females and 27 males). Whole brain RNA was hybridized
to the Affymetrix 430A and B arrays. Microarray data was
analyzed using the position-dependent nearest neighbor
analysis (PDNN; [25,26]). The R program (R Develop-
ment Core Team, 2005 [27]) was used to calculate the q
value [28], which is similar to the well known p value,
except that it measures significance in terms of the false
discovery rate rather than the false positive rate.

Expression QTL (eQTL) analysis
The B6D2F2 whole-brain database was queried to deter-
mine which Chr 12 probe-sets differentially expressed
between B6 and D2 had cis- and trans-regulation. The
B6D2F2 whole-brain database is available online at
WebQTL [29]. The analysis of the dataset is described in
Hofstetter [24], Hitzemann [30], and Peirce [31]. The
computer program HAPPY was used for permutation test-
ing [32]. This was done chromosome by chromosome for
all transcripts on the microarray (~45,000); 200 permuta-
tions of the data were performed. The 95% threshold for
a significant cis-regulated transcript was 4.3 for Chr 12.
This was also the average across chromosomes; the differ-
ence between chromosomes was ~0.1 LOD units. For
trans-regulated transcripts the analysis is genome-wide
and thus, the threshold must be increased to 5.7 to
account for all 20 chromosomes.

We presumed cis-regulation when a QTL affecting tran-
script abundance (eQTL) maps near the transcript's chro-
mosomal origin (± 15 cM). We also queried the B6D2F2
expression datasets to determine which transcripts
showed significant (LOD > 5.7) trans-regulation. These
were transcripts originating from genes which were phys-
ically located on different chromosomes from the eQTL
but mapped with a significant LOD to the QTL. This meas-
ure was inherently less precise than the measure of cis-reg-
ulation. Consequently, given the limited sample size one
can conclude only that the transcript mapped near the
QTL.

Circadian cycling of genes
We examined a database of circadian gene expression [33]
to determine if any genes in the QTL had rhythmic gene
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expression (personal communication: J. Hogenesch,
2007).

Results
Ahr vs B6 in DD
Locomotor activity of representative B6 and AhR mice in
DD is shown in Figure 1. There was no difference in the
mean locomotor activity between the two strains. The cir-
cadian periods of locomotor activity were: B6 mice 23.95
± 0.02 (SEM) and AhR mice 23.84 ± 0.02 (Figure 2). The
strains differed in mean period by t-test (p < .0005). Thus,
for the circadian period of locomotor activity, the AhR
insert appears to capture the QTL. The effect size of the
QTL was 34%.

AhR vs B6 in LD 12:12
The patterns of rest/activity in LD 12:12 for representative
B6 and AhR mice are shown in Figure 3. The mean phase
of the siesta for AhR mice was CT 22.1 ± 0.4 while that of
the B6 mice was CT 21.0 ± 0.2. The timing of the siesta
under LD 12:12 of the AhR and B6 strains differed by t-test
(p < 0.05). Consequently, the AhR insert also contains a
QTL for the siesta.

There was no difference between AhR and B6 for mean
activity or phase angle of entrainment in LD 12:12. Con-
sequently, the AhR insert does not appear to contain QTL
for these traits.

B6, C12A, and A/J in DD
The circadian periods of locomotor activity were: B6 mice
23.97 ± 0.02, A/J mice 23.76 ± 0.04, and C12A mice 23.92
± 0.02 (Figure 4). There was a significant effect of strain by
one-way ANOVA [F(2,62) = 3.14, p < .0001]. Although B6
and A/J strains differed in mean period by post-hoc t-test
(p < .001), there was no difference between B6 and C12A
strains. Thus, A/J alleles on Chr 12 do not appear to con-
tribute to the period difference between B6 and A/J.

Definition of the QTL interval
The results of genotyping are in Table 1. The D2 insert in
AhR mice extends from D12Mit60 at 35.4 Mbp to

Circadian period in hours of B6 and AhR strains of inbred miceFigure 2
Circadian period in hours of B6 and AhR strains of 
inbred mice. Error bars represent the SEM.

Raster actograms of locomotor activity of representative mice of the B6 and AhR strainsFigure 1
Raster actograms of locomotor activity of represent-
ative mice of the B6 and AhR strains. Locomotor activ-
ity was monitored by infrared motion detectors. Each line of 
recorded activity is 48 hr. Each pair of days is plotted 
beneath the previous pair of days. Activity is indicated by the 
height of the narrow histograms each 10 min wide.
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rs29161407 at 41.0 Mbp. The QTL spans 5.6 Mbp (NCBI
Build 36.1 Mbp positions). This genomic insert contains
15 genes, and 12 predicted genes.

ncSNP in the QTL interval
Candidate genes within the QTL are shown in Table 2.
Three genes in the 5.6 Mbp QTL interval contain ncSNPs
between B6 and D2 strains; Ahr (arylhydrocarbon recep-
tor), Meox2 (mesenchyme homeobox 2) and Zfp277 (zinc
finger protein 277).

Expression analysis
The expression analysis of whole brain had 29 probe-sets
representing 14 of 15 known genes in the QTL, and 12
probe-sets representing 9 of the 12 predicted genes. In
total, the chips had probe-sets for 85% of the genes in the

AhR insert. The only gene in the QTL differentially
expressed between B6 and D2 strains was Zfp277; it was
also cis-regulated. The eQTL analysis suggested that the
QTL region of Chr 12 might control by trans-regulation
expression of two genes on Chr 6 (1700019G17Rik and
ribosomal protein S2) and two unknown genes, one on
distal Chr 12 and one in an unknown location of the
mouse genome.

Circadian cycling of genes
Twenty of the genes and predicted genes in the QTL were
represented in the circadian gene expression database.
Three genes and one predicted gene showed circadian

Table 1: Phenotype and genotype of AhR and B6 mice

AhR B6

Circadian period (h) 23.83 ± 0.02 23.96 ± 0.02
Marker Mbp
D12Mit242 30.8 B6:B6 B6:B6
D12Mit60 35.4 D2:D2 B6:B6
D12Mit153 35.8 D2:D2 B6:B6
rs29213248 39.3 D2:D2 B6:B6
rs29155751 40.0 D2:D2 B6:B6
rs29161407 40.9 D2:D2 B6:B6
D12Mit2 42.5 B6:B6 B6:B6

B6:B6 – homozygous for C57BL/6J alleles
D2:D2 – homozygous for DBA/2J alleles
Mbp – position from NCBI Build 36.1

Daily profile of locomotor activity of representative mice of the B6 and AhR strains in LD 12:12 as a function of circadian timeFigure 3
Daily profile of locomotor activity of representative 
mice of the B6 and AhR strains in LD 12:12 as a func-
tion of circadian time. Profiles were generated in the 
"Activity Profile" module in Clocklab (Actimetrics Corp, 
Evanston, IL) which averaged the activity profiles for the last 
eight days under LD 12:12. The gray arrow shows the place-
ment of the siesta. The dark line indicates the mean, the 
shaded areas are SEM.

Circadian period in hours of B6, C12A, and A/J strains of inbred miceFigure 4
Circadian period in hours of B6, C12A, and A/J 
strains of inbred mice. Error bars represent the SEM.
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cycling in mouse liver but not pituitary (q < .01). The pre-
dicted gene was RIKEN cDNA A530016O06, and the three
genes were Arl41 (ADP-ribosylation factor-like 4A), Ifrd1
(interferon-related developmental regulator 1), and
Zfp277.

Discussion
Short circadian period in the AhR congenic mice relative
to their B6 progenitors confirms that the AhR insert on
proximal Chr 12 contains a QTL for circadian period, des-
ignated Cplaq10. It extends from 35.4 to 41.0 Mbp and
accounts for 34% of the total phenotypic variance in
period, a large effect. Reasonable effect size makes it more
likely that we will be able to identify the responsible
quantitative trait genes (QTG) [34].

Since B6 and C12A mice showed no difference in period,
the most parsimonious explanation is that genes on Chr
12 do not contribute to the difference between B6 and A/
J. A less likely explanation is that the phenotypic differ-
ence arises from multiple QTL on Chr 12: one set
increases period; the other decreases it; the net effect is
zero.

Traditionally the period of wheel-running is the preferred
phenotype in circadian rhythms research. However,
wheel-running both alters the circadian timekeeping of
mice and adds considerable environmental variance to it
[35]. Edgar et al (1991) showed that access to a running-
wheel shortened the period of mice [36]. When we
mapped each phenotype (period of wheel-running and
general locomotor activity) in BXD RI mice we found few
to no overlapping QTL; they were influenced by different
genes [3,16]. Moreover, when we mapped both pheno-
types in the same group of F2 mice, we found two genome-
wide associations for general locomotor activity but none
for wheel-running [18]. Therefore, period of general activ-
ity has a larger effect size than period of wheel-running
[34]. For mapping QTG of circadian rhythms, we con-

cluded that calculating period from locomotor activity
was a better choice than from wheel-running.

In the timing of the siesta (a feature common to the loco-
motor activity profile of certain strains of inbred mice) B6
and AhR differed. About 8–9 hours after their activity
begins the B6 strain has a characteristic siesta; in AhR it is
an hour later. For timing of the siesta, the AhR insert on
Chr 12 captures its QTL. Perhaps, in the interaction
between the arousal state and the circadian activity cycle,
B6 and Ahr differ as well.

The AhR insert contains fifteen genes and twelve predicted
genes. To identify candidate QTGs, we screened the resi-
dent genes for the following: non-synonymous coding
SNPs: gene expression differences between B6 and D2 in
whole brain; cis- and trans-regulation of expression; and
circadian gene expression. Several studies integrate behav-
ioral QTL and genome-wide gene expression data to iden-
tify candidate QTGs [24,37-43].

A candidate gene in this area is zinc finger protein 277
(Zfp277); it stands out because all the following criteria
were met: it contains ncSNPs; it shows differential expres-
sion in whole brain; it is cis-regulated; and it shows circa-
dian cycling of expression. Apparently, zinc finger
proteins can modulate the circadian clock. The promoter
region of mPer1 contains targets for zinc finger protein
binding and is essential in NG108–15 cells for CaM
kinase II-induced gene-activation [44]. Furthermore,
mouse LARK protein not only contains a zinc finger ele-
ment but also modulates post transcriptional expression
of mPer1; however, in this case, the element may not acti-
vate mPer1 [45].

Another interesting candidate, Ahr, codes for arylhydro-
carbon receptor (Ahr). As a member of a transcription-fac-
tor family related structurally to Bmal1 (a canonical clock
gene), it contains the following: a basic helix-loop-helix-

Table 2: Candidate QTG in the Cplaq10 genomic region

Gene Start (Mbp) Diff expr Cis-reg ncSNP Circ cyc Ensembl description

Ahr 36.08 No 6 SNP No aryl-hydrocarbon receptor
Meox2 37.62 No 1 SNP No mesenchyme homeobox 2
Arl41 40.54 No No Yes ADP-ribosylation factor-like 4A
A530016O06Rik 37.75 No No Yes RIKEN cDNA A530016O06 gene
Ifrd1 40.71 No No Yes interferon-related developmental regulator 1
Zpf277 40.83 Yes Yes 2 SNP Yes zinc finger protein 277

Start (Mbp): from NCBI Build 36.1
Diff expr: Differential expression in whole brain B6 vs D2
Cis-reg: Cis-regulated
ncSNP: non-synonymous coding SNP
Circ cyc: Circadian cycling in liver
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periodicity/arylhydrocarbon nuclear transporter/simple-
minded (bHLH/Per-Arnt-Sim) motif and six ncSNPs. Also
known as the dioxin receptor (a ligand-activated tran-
scription factor), it is expressed in brain. Although its
physiologic role is not known, it is highly conserved evo-
lutionarily. There is evidence that it regulates light-influ-
enced circadian behaviors [46].

Suggestive of additional support that Ahr is a QTG are the
following: B6 alleles (Ahrb-1) with both high ligand-affin-
ity (KD = 0.65 nM) and high receptor concentration (Bmax
= 151 fmol/mg protein); and D2 alleles (Ahrd) with low
(10-fold less than B6) [47]. Unfortunately, a preliminary
report finds that circadian period of wheel-running does
not differ between Ahr knock-out and B6 strains [46].

Although SNP typing of A/J mice supports Zfp277 as the
candidate QTG, it does not support Ahr. If a SNP is
responsible for the difference in period, we expect B6 alle-
les to associate with long period and D2 alleles to associ-
ate with short period. Since C12A mice have long period
like B6, we expect them to have the same alleles as B6 at
the critical SNP. This is true in Zfp277: at both of the ncS-
NPs where B6 and D2 differ, C12A mice have the same
allele as B6. However, at five of the six ncSNPs in Ahr
where B6 and D2 differ, C12A mice have the same allele
as the strain with the short period, D2.

There are a number of caveats to put forward when inte-
grating QTL and gene expression data. Within any interval
the Affymetrix array surveys some of the known and pre-
dicted genes. Representation is 85% for our interval, so
there may not be an Affymetrix probe-set for the true
QTG. Furthermore, some gene products have multiple
probe-sets, but only one probe-set may show differential
expression. Consequently, we may have failed to detect
differential expression of a particular transcript. This is
especially true for genes with only a single probe-set.
There were several trans-regulated transcripts that mapped
to the interval of interest but we were unable to link any
transcription factor or factors within the interval to trans-
regulated genes. The complexity of the relevant biology
makes these analyses preliminary at best. Finally, we used
whole-brain datasets taken at a single circadian time. Dif-
ferential expression of several genes in the QTL might be
found by examining tissue from the suprachiasmatic
nucleus (SCN) taken at several times across the circadian
cycle.

The current study is an example of using multiple
resources and strategies to characterize a QTL. In future
work we will assess the period of generalized locomotor
activity of Ahr knock-out mice compared to their back-
ground strain. It is possible that the period of generalized
locomotor activity differs from the period of wheel-run-

ning. We will also perform real-time quantitative PCR of
candidate QTG using SCN tissue. If these steps support a
candidate QTG, we will use BAC gene transfer to confirm
them [48].
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