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Abstract

When one is faced with the analysis of long time series, one often finds that the characteristics of circadian rhythms
vary with time throughout the series. To cope with this situation, the whole series can be fragmented into
successive sections which are analyzed one after the other, which constitutes a serial analysis. This article discusses
serial analysis techniques, beginning with the characteristics that the sections must have and how they can affect
the results. After consideration of the effects of some simple filters, different types of serial analysis are discussed
systematically according to the variable analyzed or the estimated parameters: scalar magnitudes, angular
magnitudes (time or phase), magnitudes related to frequencies (or periods), periodograms, and derived and / or
special magnitudes and variables. The use of wavelet analysis and convolutions in long time series is also discussed.
In all cases the fundamentals of each method are exposed, jointly with practical considerations and graphic
examples. The final section provides information about software available to perform this type of analysis.
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Background
Virtually all living beings exhibit circadian rhythms that are
manifested as oscillations with periods close to 24 hours in
almost all their physiological variables. The study of these
rhythms is thus based on the characterization and quantifi-
cation of these oscillations, and, for this, one can use vari-
ous statistical and mathematical techniques [1], which often
come from wave analysis theory. These techniques include
quantification of various descriptive parameters in the time
domain: average values, variability (variance) of the oscilla-
tion, amplitude, the duration of the activity phase (alpha),
the mean value in the alpha phase, and a whole host of in-
dices derived from these and other similar magnitudes. An-
other set of techniques to study the characteristics of the
rhythm in the domain of frequency are: spectral analysis,
periodic regression (fitting to sinusoids), periodogram, cal-
culation of phases, etc. In all these cases the presence of a
periodic process is assumed, which is repeated with a cer-
tain frequency, either known or unknown.
In many such studies, a descriptive analysis is enough to

characterize the circadian rhythm of one or more individ-
uals under certain circumstances, and it is common to

compare these parameters among different individuals
that may be under different environmental conditions or
under different experimental conditions. But a different
situation occurs when performing long experimental stud-
ies in which a variable is recorded (usually spontaneous
motor activity) for long periods of time [2]. In these cases
the main objective of the study is usually to observe and
quantify the evolution and the changes in the rhythm
throughout the study. To do this, one applies the afore-
mentioned techniques, repetitively at different times of the
period analyzed. So we can “cut” the recorded data series
in several sections to be analyzed individually and then
compare the results.
However, when very long and practically continuous

registers are available, it is of greater interest the study
of the changes that occur over the time, in a continuous
or quasi-continuous (daily) way. This is particularly fre-
quent when monitoring changes of phase, in response to
external stimuli, or to environmental changes. But virtu-
ally all variables from the descriptive analysis of a circa-
dian rhythm can be continuously monitored over time
[3]. This type of analysis provides invaluable information
to the knowledge of the circadian system and their re-
sponses. This is also of great interest in the study of theCorrespondence: adieznoguera@ub.edu
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processes of maturation or degeneration that occur
throughout the life of the individuals of a given species.
In this article we will review the techniques that allow

the analysis of circadian rhythms through a relatively
long period of time, considering the most frequently
used and also their software availability and its inform-
ative value. In all cases, the techniques will be intro-
duced briefly along with some comments about its
features and applicability. To properly illustrate their
characteristics, both synthetic and real experimental
datasets will be used in examples, to highlight some fea-
tures of their behavior.

The serial analysis concept
The study of changes in the characteristics of a rhythm
over time is a kind of “multiresolution analysis” since
the factor “time” is considered at two clearly differenti-
ated levels: one level of resolution is related to the circa-
dian rhythm itself (approximately 24 hours) and the
other is the level of resolution of the timescale in which
it is intended to detect changes of circadian rhythm,
which can range from a few weeks to several months or
years. In some special cases these changes are also peri-
odicities like, weekly, monthly or seasonal. This leads to
a set of techniques in which the primary data series is
constituted by the results from the daily analysis of the
original data, and will not be considered in this article.
The first step necessary to perform the analysis over

time is to segment the data series into different sections
with the same size, in each of which an analysis in the
“circadian range” will be done. In this way we will obtain
a series of results that will constitute a new series in a
“global range of time”. This type of analysis is often ap-
plied to data sets that are analyzed in the circadian range
by fitting a sine function in what is called “serial ana-
lysis” or “serial section analysis” [4-6]. Although strictly
speaking the term “serial analysis” is widely used for the
investigation of specific sequences in ordered collections
of data (e.g. analysis of base sequences in genetics) we
consider that we can keep using this term, without am-
biguity, in the area we are now considering. Another
possible term that we can use for this analysis could be
that of “sequential analysis” since the analysis is
performed sequentially in one section after another, but
this term also has a specific meaning in statistics differ-
ent from what we are considering here. Here we will
generalize the use of the term “serial analysis” to cases
where the analysis of successive sections will not be
based on fitting the data to a sinusoid in the circadian
range. This will be the case of the periodograms, phase
analysis, etc.
In order to establish a consistent formal notation, we

will consider a generic variable as X (temperature, motor
activity, plasma concentration, blood pressure, etc.),

whose different values over time are expressed as a func-
tion of time x(t). The series (being analyzed) is consti-
tuted by the successive observations made at different
times t1, t2 … ti (i = 1 … N) giving the values x (t1), x
(t2), … x (ti). For simplicity, in the case of a discrete
series of values, we can do xi ≡ x (ti), so that the series
will consist of {x1, x2 … xi}. In all cases (and if not other-
wise stated) it is assumed that the series is uniformly
sampled with a constant sampling interval Δt = ti-ti-1. In
this series, we can define different sections as subsets of
m values of X, which are generically designated with the
letter Y. Thus the series Yk (i.e. the section k) will be
formed by l values of X, starting at the sample k, so that:
Yk = {y1, y2 … yl}k = {xk, xk+1, … xk+l-1}. In the next part
will show a more precise formulation, depending on the
characteristics of the section.
Regarding the nature of the variable X, practically all

methods of analysis are defined for continuous quantita-
tive variables, like temperature or blood pressure, but in
many cases the variable has a discrete quantitative (count-
able) character, as the number of movements. In these
cases one can consider that the value of the variable (e.g.
the number of counts in a fixed time) is proportional to
the probability that an individual makes a move or, in any
case, is proportional to the abstract variable “the tendency
to move”. According to this, one can treat these variables
as a continuous one. To be strictly correct these values
should be transformed by the application of a linear filter
[6], but this should be necessary only for extremely
discrete values (only 2 or 3 levels). For values greater than
5 they can be used directly without any transform.

Characteristics and definition of sections
In the previous paragraphs a simple way to define the
sections has been considered, taking into account only
its position in the overall series X and its length l. Actu-
ally the definition of the different sections is a bit more
complex since it is necessary to consider the magnitude
(s) of the displacement (jump or step) between succes-
sive sections. Both the length of the section (l) and the
magnitude of the shift (s) have a close relationship with
the value of the period T, to be used for the analysis. So
the generic definition of successive sections Y1, Y2 … Yj
(j = 1, 2 … n; n =N · l/s + 1) is Yj = {y1, y2, … yl} j = {x (j-1)s+1,
x (j-1)s+2 … x (j-1)s+l}, which is shown more clearly in
Figure 1. Thus y1, y2, … yl, represent the elements of any
section, while appending a subscript j, then yj,1, yj,2, … yj,l
represent the elements of a particular section Yj. Hereafter
and unless otherwise indicated, all values of the intervals
(s, l, and T) are expressed in number of samples, so that
their value in real time units will be calculated by multi-
plying by the value of Δt sampling interval. From each sec-
tion a characteristic value of the circadian rhythm will be
obtained. The array of these values {z1, z2, … zn} will be
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the new Z series whose evolution is analyzed over time
and that is the objective of the serial analysis.
The selection of the length l of the section and the

value of the displacement s must be done carefully,
taking into account the following considerations. The
length value must be an integer multiple of the period
used for analysis in the circadian range (T, used to be
the period corresponding to 24 h), otherwise false oscil-
lations appear in the Z series, which will not be more
than a residual of the original oscillation. Figure 2A
shows the effect of the length of the section on the series

of results Z. In the example the variable Z corresponds to
the mean value of the sections, i.e. z =mY. The data set X
is a sinusoidal function with period T = 12 and a constant
of 1. The step value is set at s = 1, so that the sections
overlap in order to obtain the “instant” value of the mean
for each time point. The lengths l that are tested corres-
pond to l = 3 T/4, T and 5 T/4. It can be clearly seen that
for l = T, the Z value reflects the actual value of the average
over the entire range studied, whereas for l = 3 T/4 and
5 T/4, an oscillation occurs in the value of m with the
same period as the original series X.
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Figure 1 Schematic representation of sections. X is the original data set. Filled circles correspond to the elements of the section Y2. In this
example the step s = 4, and the length l = 10, so they are overlapping sections (s < l). Δt is the sampling interval (see text for details).
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Figure 2 Effect of the length of the section on the result series values Z. In the top row, the original series (X), and in the lower rows the
resulting Z variables, using sections with different lengths. In A, X is a sinusoidal function with period T = 12. The graphs below, show the mean
value calculated with a step s = 1, and l values of 3 T/4, T and 5 T/4. Although the real mean remains constant, for different values of l, an
oscillation is present. In B, X is a sinusoidal function with period T = 12 with a phase delay in the middle of the series. In the lower graphs the
phases calculated with sections of length T, 2 T and 4 T, are shown. A smoothing of the real phase shift is visible when increasing the length of
the section.
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For the selection of the jump s, one must take into ac-
count whether the value calculated at circadian level,
could be considered as a continuous process that exists
all the time, or exists only for intervals of length equal
to T. In the first case it can be considered that there ex-
ists an “instant” value (e.g. the heart rate), which allows
the calculation of Z for each point of the original series,
i.e. Z can take values at any time between 0 and T. In
the second case (e.g. the calculation of an amplitude), it
would be advisable to use a value of s = T, to avoid the
errors discussed in the previous paragraph.
When one uses values of s lower than l, an overlap oc-

curs between the successive sections, which should be
taken into account when one checks the statistical sig-
nificance of the values of the resulting variable Z. This
applies only where the variable Z, calculated from sec-
tions, is defined under some hypothesis, such as being
different from zero, or a fixed value, which allows the es-
timation of the statistical significance. This could be the
case that Z corresponds, for example, to an average or a
variance. If there are no overlapping sections, the signifi-
cance level p, for each value of Z, can be calculated inde-
pendently, because the data sets used to calculate each
value of Z are different from each other. Conversely, in
the event of having overlapping sections (s < l), the suc-
cessive values of Z, share several values of X. Thus a part
of a data set used to calculate a Z value can be used to
calculate other Z values. In these cases, to maintain a
fixed level of significance, a correction should be applied
to calculate the level of significance for each single test
of Z, depending on the number of statistical tests (Z
values) that share a value of X for its calculation. If we
call this number m (m = integer(s/l)-1), the corrected
significance level will be calculated by Sidak’s formula [7]
pm = 1-(1-p)1/m which, for values of m > 3, is approached
by the Bonferroni correction [8] pm = p/m, where p is the
probability level for the overall set of tests.
The last aspect to be considered is the expected rate

of change in the process being studied. In this case a bal-
ance is required between the minimum length of the
section needed for calculating the parameter Z (e.g. the
phase), the magnitude of the jump s, and the expected
rate of change. The rate of change is defined by the
time-constant of the process, which in physics is defined
as the time required for the variable to reach a fraction
of 0.632 of its final value (0.632 = 1-1/e). In order to fol-
low the changing process properly, the value of the step
s must not exceed the expected time-constant of the
process, and it is recommended to keep it below half
that value. With regard to the choice of the length of the
section l, this should be kept as short as possible in
order to detect changes in the moment at which they
occur. Anyway, this value will be conditioned by the
length required for the calculation of the parameters

corresponding to Z. Thus, for example, in the case of a
serial periodogram, it is necessary to use a length l ≥
10 T, to perform the calculation confidently.
It has to be kept in mind that, when very long sections

are used, a smoothing will occur in the series of values of
Z. This smoothing is equivalent to the average of a num-
ber of Z values equal to the number of complete cycles T
included in each section (see Figure 2B). Thus a value of Z
obtained from sections of length l =mT, is equivalent to
the smoothing of m elements calculated in the Z series
(calculated with a length l = T). This effect may be desir-
able in cases where the variable Z is very unstable, but it
should be avoided when dealing with rapidly changing
processes. In many cases where the studied variable may
change from cycle to cycle, one single cycle is enough for
the determination of Z values, and very often the three in-
tervals take the same value, i.e. T = l = s.
A final consideration relates to the mode of presenting

the results graphically that, in general, differs from the
regular cartesian graph with the time axis in the abscis-
sas. Since this type of analysis is performed on large data
sets, which are usually represented as actograms or
“double plotted graphs”, most often the results series Z
is represented, in parallel to the above graphs. That is,
the variable Z is represented in abscissas, and vertically,
starting from the top, successive values of Z (derived
from sections) are shown in descending order. When
the variable Z corresponds to a time (or phase) within
the cycle T, the horizontal axis goes from 0 to T, and
often it is superimposed to the “Double plotted graph”
of X to facilitate the location of phases within the series
analyzed.

Analysis of sections and types of variables
As already mentioned the “results series” Z is formed by
the sequence of values resulting from the analysis of suc-
cessive sections and obtained from the segmentation of
the original series X. Thus, Z is a variable, or a feature of
each section, as could be the average amplitude of a si-
nusoidal oscillation, the period, the variance, etc. In
order to describe the different possibilities, five types of
results can be considered: scalar magnitudes, angular
magnitudes (time or phase), magnitudes related to fre-
quencies (or periods), periodograms, and derived and/or
special magnitudes and variables. Each one of these
types has some common formal and methodological
properties that will be discussed below.
There is another type of analysis called “wavelet ana-

lysis” which also allows seeing the evolution of the charac-
teristics of the circadian rhythm through time. Although it
uses a very specific methodology that is different from
above, a comment on this technique will also be included
jointly with the convolutions.
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Scalar magnitudes
They are simple magnitudes representing a feature of
the rhythm analyzed at a circadian level. Usually non-
overlapping sections are used, with s = l = T (daily sec-
tions). They have clearly descriptive purposes, and
among the most used are: the mean, the median or a
percentile value, but also the minimum value, the max-
imum value, the total (daily) sum, the variance or the
range can be used. Figure 3 shows the evolution of some
of these parameters for a real data series.
In case of using sections with a length different of T, it

is very important that the length l be multiple of T (as
already discussed in the previous section) to avoid the
presence of false fluctuations in the analyzed parameter.
Another consideration to be taken into account when
trying to plot individual values of the series (e.g.: mini-
mum or maximum values) will be the application of fil-
ters, since in the case of using values calculated from the
entire section, random variations or noise present in the
data is compensated by the calculation itself, whereas
when the result is a single value from the series it can be
seriously disturbed by the noise. Applying a filter to the
whole data set before the calculation is a practice

advisable in most cases, as it reduces the noise in the
series, decreasing the residual variance and increasing
the accuracy in the estimation of parameters.
The use of numeric filters constitutes a broad field in

the theory of signal analysis and there is a wide variety
of types and features, and highly specific filters can be
designed for the removal (or amplification) of definite
frequency ranges. Except in special cases, the use of very
specialized filters can modify the presence of frequency
components in an unwanted manner, distorting seriously
the characteristics of the series being analyzed. Instead,
what is really advisable is the use of simple filters for
noise reduction, which is usually constituted by high fre-
quency components.
Thus, it will consist in applying low-pass filters, the

simplest one of them being the moving average. With a
moving average, the new filtered data (x') will be
obtained by averaging the n values before and the n
values after the reference point, according with the for-
mula x'i = (xi-n +… + xi +… + xi+n) / (2n +1). The moving
average produces a smoothing effect on the data that
removes high frequency components, depending on the
amplitude of the interval M = 2n + 1, as shown in

Figure 3 Serial analysis of a 360 days record of motor activity of a rat submitted to different light patterns. Sections are s = l = T =
1440 min. The calculated variables are shown at right: mesor, percentile 95% and standard deviation.
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Figure 4A. The choice of n will depend on the highest
frequency to be detected in the subsequent analysis. To
determine the effect of smoothing we can calculate the
transfer function H(f ), according to the formula: H(f ) =
abs [sin(π · f · M) / (M · sin(π · f ))], where H(f ) represents
the relationship between the signal before and after fil-
tering for each frequency f, where a f = 1 is the frequency
corresponding to two sampling intervals: fN = 1/(2 Δt),
that is known as the Nyquist frequency. As an example,
for a sampling interval of Δt = 15 min., a frequency f =
0.4 corresponds to a period T = 1/f = 1/(0.4 · fN) = 2 Δt
/0.4 = 2 · 15/0.4 = 75 min. As seen in Figure 4A, the fre-
quency reduction is not uniform and has a strong ripple,
but remains at very acceptable levels. It is possible to de-
sign a filter with a much flatter response, but it is actu-
ally much more complex. Regarding the sample interval,
we must remember that the shorter period that one can
analyze in a series is determined by the Nyquist fre-
quency, giving a value of T =1/fN = 2 Δt.

In real series there is a reduction of low frequencies
somewhat higher that in theory, as shown in the ex-
ample of Figure 4B, calculated from a series of “real pink
noise” (1/f ). The same figure shows the effect of apply-
ing another interesting filter: a running median. This
type of filter is highly recommended because it elimi-
nates very effectively spurious or aberrant data from the
series. In the case of the moving average, these values
can produce a displacement that may distort the series
significantly. In addition, the moving median produces a
similar reduction at high frequencies as the moving aver-
age does but with a noisy transfer function. In spite of
this, the filtering effect is practically unaffected. For
these reasons it would be always advisable to smooth
out the data with a running median before proceeding
to the serial analysis of data.

Angular magnitudes (time or phase)
Tracking a characteristic moment of the circadian cycle
along successive days is usually one of the most charac-
teristic aspects of numerous circadian rhythm studies.
The choice of this point is controversial, and there is no
consensus in defining a unique moment that can be used
in all cases. In many cases where the motor activity of
an animal is recorded, the beginning of the active phase
is usually a very stable indicator of the phase of the ani-
mal [9,10]. In other cases, for certain diurnal animals,
the offset of activity is better [11], while in other cases
more complex patterns hinder the selection of a charac-
teristic point. In many cases the right selection of one
point or the other determines the quality of results, as in
the case of the calculation of phase changes to obtain a
phase response curve [12].
When the patterns are less contrasted or softer, or the

variables change with a slower speed (e.g. body tem-
perature), it is usual to adjust an envelope to the data [13]
or, better, find a parameter indicating the central phase of
the cycle. This is usually done by the estimation of the
acrophase [14,15], which results from fitting the data of
the section to a sinusoidal function. The acrophase repre-
sents the instant at which the function reaches its max-
imum value. In the case of a uniform or regular sampling,
the acrophase is easily calculated from the formula:

ϕ ¼ arctan
∑n
i¼1yisin

2πi
n

∑n
i¼1yicos

2πi
n

In many cases when the pattern of the studied variable
is far from sinusoid, the time of acrophase will not ne-
cessarily coincide with the maximum value of the actual
series, and for this reason many authors criticize its use,
but we will see later that the phase φ (or acrophase) is
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Figure 4 Transfer functions corresponding to the application of
a moving average in a series with a sampling interval of
15 min. Periods are represented in the abscissas (in minutes), and in
the ordinates is the ratio of pass for different periods. In A,
continuous line is for an interval of 5 points (1 h), dotted line for 9
points (2 h) and dashed line for 17 points (4 h). In B, real transfer
function for pink noise using a moving average (dotted line) and a
moving median with the same interval (continuous line).
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probably the best parameter of centralization, even in
these non-sinusoidal cases.
Before continuing with the discussion of phase indica-

tors, it should be noted that, as in the case of scalar
magnitudes, it is advisable to use non-overlapping sec-
tions with s = l = T (daily sections), since we are analyz-
ing a value (a phase) whose definition involves a
complete cycle (only one T) and also assumes that the
value can change from day to day.
To avoid the problem of lack of fit between the data and

the sine function, in most studies the center of gravity of
data is used [16-18]. Conceptually, this procedure does
not prejudge the profile of the series and shows, in a to-
tally reliable way, the “temporal center” of the variable
studied. The center of gravity in a time series was defined
by Kenagy [19] as the mean time of the activity events. To
calculate the phase corresponding to the center of gravity
in an evenly sampled series, we can use the formula:

ϕcog ¼
2π
n
∑n
i¼1iyi
∑n
i¼1yi

Despite the advantages already mentioned, this method
has practical drawbacks to maintain the wave profile more
or less centered in the range of the analyzed section.
Suppose the case of a perfect square wave. In this case,

if the start of the wave (positive edge) moves, the center of
gravity of the wave will move in the same manner, since
the entire wave falls within the range tested. But if the dis-
placement of the wave is such that the wave starts at a

point in the cycle, but the end is located beyond the range
tested, then the final portion of the wave moves to the be-
ginning of the cycle, and the center of gravity will be lo-
cated erroneously in the lower part of the wave, as shown
in Figure 5A. To avoid this error the analyzed section
must be redefined each cycle. However, in a real series, the
difference between high and low values is not as marked
as in the example, which makes it virtually impossible to
make such adjustments. Figure 5B shows how the center
of gravity would change in a simulated sinusoidal series.
The solution to the problem of having to modify the

section analyzed in each cycle (it requires an approximate
knowledge “a priori” of the phase changes) is to calculate
the center of gravity in a circular manner, rather than lin-
ear in time. This assumes that the different values of the
series are distributed in a unit radius circle and each point
represents a mass equal to its value. Thus the coordinates
(a, b) of the center of gravity is calculated by the formulae:

a ¼ ∑n
i¼1yi cos

2πi
n

∑n
i¼1yi

; b ¼ ∑n
i¼1yi sin

2πi
n

∑n
i¼1yi

The angular position of the center of gravity (a, b) is
the phase, and its tangent is the ratio b/a, so that if we
calculate this ratio, we obtain:

b
a
¼ ∑n

i¼1 yi sin
2πi
n

∑n
i¼1 yi cos

2πi
n

since the terms ∑n
i¼1yi cancel out. This expression is the

same as the formula for calculating the tangent of

A B

Figure 5 Calculation of center of gravity. A: effect of the displacement of the wave with respect to the section in the calculation of the c.o.g.
(black triangles). B: serial calculation of the c.o.g. (red line) in a simulated sinusoidal wave, with s = l = T. Red rectangles show two sections to
illustrate the displacement of the wave with respect to the section. If this displacement is not compensated, the erroneous estimation is clearly
visible on the resulting graph.
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acrophase, so that the acrophase exactly equals the cen-
ter of gravity, independently of the position of the be-
ginning of the analyzed section. This is a very important
result and is for that reason (acrophase coincides with
the circular center of gravity) that the acrophase can be
considered the best parameter of centrality. Figure 6A
shows the evolution of acrophase in a real series, jointly
with other parameters to be discussed below, and
Figure 6B shows how the estimation of the acrophase
is affected by changes in the shape of the rhythmic
pattern.
Regardless of the parameter of centrality, in numerous

studies the focus is on determining the start of the active
phase or the end of it, especially when patterns have
non-sinusoidal waveforms (generally square) or when
working under the hypothesis of various oscillators (e.g.
morning and evening components [20]). It is also com-
mon to study the two points simultaneously, and such is
the case of studying the duration of the alpha phase [9].
Again, if the contrast between the phases of activity and
rest is marked, the estimation of these parameters is
relatively simple. Often this estimate is done “de visu”
on the graph itself (“double plot”), where the values are
estimated graphically, but it is possible to use analytical
methods that are more accurate and totally objective,
such as those shown below. We must bear in mind that
if the studied variable X has a certain inertia (e.g.,
temperature) the use of graphical methods can be very

complicated, because of the difficulty of establishing the
threshold between high and low values.
The procedure that often works best is to perform

(for each section) a regression analysis between the data
and the Heaviside function (the unit step function)
using a variable displacement ψ between the series and
the Heaviside function. The offset value ψ varies from 0
to n, and the value of ψ at which the higher correlation
index is obtained is chosen as the indicator of the start
of activity phase. Mathematically, Heaviside function is
represented by the letter H, but to avoid confusion with
the transfer function used above, we’ll use the symbol θ,
which is also used in some cases of continuous func-
tions. This function is defined as θ(t) = {0: t < c, 1: t ≥ c},
i.e. is zero for any time lower than an arbitrary value c,
and 1 for times greater than or equal to c, thus
representing a unit step. The procedure, in fact, looks
for the time point when the data set has a behavior
similar to θ(t). Formally at that point there is a “positive
flank”, which is indicated by the symbol ψ+. To calcu-
late the end of the phase of activity, one uses the same
procedure but using the complementary function de-
fined as θ'(t) = 1-θ(t) = {1: t < c, 0: t ≥ c }, defining a nega-
tive step, so that the point found corresponds to the
negative flank ψ-.
There are variants to improve the calculation for the

estimation of the flanks, consisting in performing the re-
gression analysis with a modified set of data instead of

A B

Figure 6 Estimation of acrophase. A: evolution of acrophase (red), positive flank using Heaviside function (green), and center of gravity (blue),
in a real series of motor activity from a mice submitted to 8 h advances in the light–dark cycle. B: evolution of the acrophase in a simulated
series with one bout of activity at the beginning and the end of a square wave, to show the effect of the wave shape on the estimation of the
acrophase. In both cases de sections are s = l = T.
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with the original data series. The transformation consists
in “dichotomizing” the series by a threshold u, so that
the transformed series is defined as y' = {0: y < u, 1: y ≥
u}. Thus we obtain a series consisting of zeros, when y is
below u and ones when above. The threshold u is usu-
ally defined by the mean or (better) by the median of Y.
It is also possible to use a percentile value, depending on
the distribution of values on the series Y. The choice of
threshold requires some knowledge of the characteristics
of the series and is frequently accomplished by tests and
trials, comparing the graphs of the ψ values obtained on
the dataset itself. Figure 7 shows the curves of negative
and positive edges over the actogram of a real series.
Another possibility to estimate the position of flanks

is to use a square wave for the regression instead of the
Heaviside functions (see Figure 7). This procedure im-
proves slightly the previous one because the Heaviside
function only takes into account an increase (or de-
crease) on the series values, which means that a part of
the series is not properly adjusted to the actual values
because in the real data set both an increase and a de-
crease take place. To solve this problem a first estimate
of the positive and negative flanks is made using the
above procedure. After that, the positive flank is kept
(c = ψ+) and successive regression analysis are per-
formed, as in the previous case, but with a square wave
function q(t) = {1: c ≤ t < d, 0: otherwise} and changing

d till finding the best fit that will define the negative
flank d. Then the procedure is repeated but keeping d,
and obtaining a new value for c. These new values of
flanks, c and d, are compared with the values ψ + and ψ-
obtained initially. If they are equal, they are considered
valid, but if different, the procedure is repeated using
the new values c and d as the initial estimates of flanks,
and the procedure continues until the two pairs of
values coincide. Although the procedure is a bit com-
plex, it can be automated, and has the advantage that it
gives very good estimates, especially in series with ir-
regular circadian patterns.
Finally, we will discuss other methods for estimating

parameters of centrality or flanks, which are much sim-
pler, but their application is restricted to highly uniform
and noise-free series. It consists simply in determining
the time at which the series has its minimum value or
its maximum value, or the point at which the greater in-
crease or decrease takes place between two successive
values (positive and negative flanks respectively). To
apply these methods, a previous smoothing of consider-
able amplitude is necessary. Another possibility is locat-
ing the point at which the data series crosses a certain
threshold (mean, median or percentile), but here it is
necessary to apply a moving average with an amplitude
close to one third the length of the cycle analyzed, to re-
move local variations. A serious inconvenient of these

Figure 7 Onsets and offsets. The figure is a triple plotted actogram from a rat, with the positive flanks (blue) and the negative flanks (red)
calculated by fitting dichotomized data to a squared wave (left) and to a Heaviside function (right). Small differences are visible in the
two methods.
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techniques is that the smoothing effect can be so great
that they cause distortion in the wave and errors in the
estimation of parameters. Therefore these techniques
are not very suitable and should be used only in the case
of very “soft” waveforms.
A consideration which is common to all angular mag-

nitudes that have been considered in this section is the
monitoring of the phase changes between sections, to
avoid changes greater than half a cycle T/2 = π rad =
180°. In an example where the sections are analyzed with
T = 24 hours, it could be possible, as a result of a calcu-
lation, to obtain a phase shift of 18 hours, which actually
corresponds to a change of −6 hours, considering the
shorter jump. In this case, one would have to subtract
24 hours (T = 2π rad = 360°) from the calculated value to
obtain the correct value. It must be noted that the value
of the phase shift has to be calculated from the expected
value in the corresponding section and not the absolute
value of the phase. Suppose we obtain values 4 h, 6 h
and 8 h in subsequent sections. If in the next section we
obtain 10 h, it is clear that it is equal to the expected
value and the phase shift from the expected value will be
zero, although there is an absolute increase of 2 h, with re-
spect to the previous section. To monitor the phase and
make corrections properly, one must take the k values of
the preceding sections and extrapolate the next point on
the basis of linear regression with the previous points. It is
possible to obtain relatively simple formulae for this ex-
trapolation for fixed values of k ≤ 6. In this way, false
jumps will be eliminated in the calculated series of phases.

Magnitudes related to frequencies (or periods)
The main property of a rhythm is its period (or fre-
quency, which is the inverse of the period). After know-
ing the period, the amplitude of the oscillation is
the characteristic that best indicates the importance or
the magnitude of the rhythm. In addition to quantifying
the amplitude, one can use other related measures to de-
termine the importance of a rhythm, such as the per-
centage of power or variance. In principle, the simplest
oscillation and the one than least prejudges the pattern
of a rhythm corresponds to a sinusoidal oscillation. For
this reason the first analysis tool will be the fitting of
data to a sinusoidal function, which is known as “peri-
odic regression” [21]. This technique, classical in circular
statistics, estimates the amplitude and the acrophase of
the rhythm present in a data series [22]. This technique
has been adapted for the analysis of circadian rhythms
using a characteristic polar representation that facilitates
the visualization and analysis of the confidence intervals
of the estimated parameters, leading to the “cosinor”
method [23]. When the pattern is more complex than a
simple sinusoidal function, the adjustment can be made
to a function that includes a number of sinusoidal

components, each with a period that is sub-multiple of
the main period T:

y tð Þ ¼ c0 þ c1cos ωt−θ1ð Þ þ c2cos 2ωt−θ2ð Þ…

þchcos hωt−θhð Þ; ω ¼ 2π
T

y tð Þ ¼ c0 þ ∑
h

i¼1
ci cos ωit−θið Þ; ωi ¼ i2π

T

where ci and θi are the amplitude and phase of each com-
ponent i. Each one of these components is called a har-
monic, and the graphical representation of the amplitudes
of the successive harmonics is the spectrum of the series.
This spectrum is characteristic for each rhythmic pattern
shape and clearly indicates the different frequency compo-
nents involved in defining a pattern. The decomposition
of a waveform into its harmonic components is done by
spectral analysis or Fourier analysis [24,25].
This type of analysis can also be done serially on sections

that may overlap or not. In case of overlapping sections, as
already mentioned in previous cases, the procedure will
produce a smoothing over the values of all the parameters
resulting from the analysis. If one makes a serial Fourier
analysis, it is important that the length of the analyzed sec-
tions is equal to or an integer multiple of the period used
for the main analysis. This is because under this condition
(orthogonality), the estimates of harmonics are independ-
ent of the other components, so that if one harmonic has
certain amplitude, this does not affect the magnitude of
another harmonic, while if the condition of orthogonality
is not satisfied, the estimation of each harmonic affects the
other components, which leads to an erroneous or biased
spectrum. In this type of analysis, it is particularly useful to
employ power spectrum (instead of the amplitude) in
which the magnitude of each harmonic is expressed as the
fraction that represents the square of its amplitude with
respect the sum of the squares of all harmonics. This al-
lows to quantify the importance of each component as a
rate (or percentage), regardless of its real amplitude. In this
case the spectrum is called power spectrum.
In all these analyses, one must establish a value for the

period, that must be known or estimated “a priori”. This
is the fundamental period to be used throughout the
whole analysis and that, logically, will be the rhythm of
the series. When this period is not known with accuracy,
we shall see other techniques aimed precisely at deter-
mining the value of the period of the rhythm.
In the case of the serial analysis of these magnitudes, the

most frequent is to follow the evolution of the amplitude
(or power) of the first harmonic. It is also possible to follow
the evolution of several components at once, but this results
in very complex graphs in which the lines for each
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harmonic intersect and it is almost impossible to visualize
the evolution of each one of the curves. In some cases it
may be of interest to study the power of several harmonics
at a time (typically, the sum of the first components). In any
case, there is a graphic method for the representation of the
successive spectral analysis that perfectly shows the evolu-
tion of the different components over time. This representa-
tion consists of making a graphic matrix [26] in which each
row corresponds to the analysis of one section (usually one
day or one cycle) and each column to a harmonic. Each cell
of the matrix is colored with a color (or gray intensity) pro-
portional to the power of the harmonic corresponding to
the row (section) analyzed. To improve visualization of
changes in each harmonic, a vertical moving average may
be applied, as shown in Figure 8. This figure shows the cor-
responding graphical matrices for a real series and a syn-
thetic series gradually passing from a square wave pattern
to a sinusoidal. This example clearly shows the evolution of
the different components that make up the square wave.
Importantly, the presence of harmonic components in the
spectrum does not necessarily indicate the presence of
rhythms other than the main one, but often they are consti-
tutive components which are integrated in the definition of
a specific pattern and should not be interpreted as express-
ing oscillations other than the fundamental period. In the
case that the amplitude of a harmonic component is greater
than the main component, then it would be justified to pre-
sume the presence of a differentiated basic rhythm. We
have already mentioned that the spectra are characteristic
for each rhythmic pattern, or waveform. Thus, in Figure 8A,
it is clear that in the spectrum corresponding to the square

wave, even harmonics are zero, which is a characteristic of
symmetrical waveforms, and the amplitude modulation of
the sinusoidal component is a characteristic of rectangular
shapes. With some experience it is possible to deduce
some features of the waveform from the inspection of the
spectra. In the case of Figure 8B, one can see the transition
of an ultradian pattern characteristic of an immature ani-
mal to the characteristic circadian pattern of an adult.
A special case occurs when a series presents two simul-

taneous rhythms with close periods [27]. In this case it is
not possible to define a section length containing an inte-
ger number of cycles for the two components, so that the
orthogonallity condition is not satisfied, and consequently
the parameters of the two rhythms cannot be estimated
independently. In these cases one must chose sections
containing at least 2 or 3 full cycles and make an adjust-
ment using a linear model that includes the two periods,
which must be known in advance. Thus it is possible to
calculate the ratio of the amplitudes (or power) between
the two components, although the absolute individual esti-
mates are always modified by the presence of the other
component (non-orthogonal). Figure 9 shows an example
of this type of analysis, corresponding to the motor activity
of a rat maintained under LD cycles with a period of
21 hours, which shows the simultaneous presence of the
animal’s own endogenous component and the component
entrained by the light.

Periodograms
In the previous section, quantities related to specific fre-
quencies (or periods) were calculated, meaning that the

BA

Figure 8 Graphic representation of the evolution of power spectra for a synthetic and a real series. In both examples double plotted
actogram is at the left of the graphic matrix in which each column corresponds to a harmonic. In A, a simulated series with a rectangular pattern
that changes in length becoming symmetric and then changing to a sinusoidal. The characteristic spectrum of rectangular waves is clearly visible.
When symmetric, even harmonics are null, and all the harmonics disappear but the 1st, when the sinusoidal pattern appears. In B, a real record
of a young rat after weaning under constant light, clearly showing the transition of an ultradian pattern characteristic of an immature animal
(harmonics around 8), to the characteristic circadian pattern of an adult (power in the 1st harmonic).
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value of the frequency at which the data should be ad-
justed is known or assumed in advance. Now we will
deal with the case in which the value of the frequency
(or period) is unknown, and the aim of the analysis is
precisely finding its value. For these calculations a spec-
trogram can be used, or one may conduct a serial ana-
lysis consisting of successive periodograms. Usually,
quite long sections are required, which must encompass
a minimum of 8–10 days (or cycles). The jump between
successive sections usually is a complete cycle. Thus
what is obtained is a daily succession of periodograms.
Each periodogram is a row in a graphic matrix and each
cell will correspond to one of the tested periods in the
specific section, colored according a gray scale, or other
chromatic scale. The most suitable periodograms for this
kind of representations are the Lomb-Scargle [28,29]
and the Sokolove-Bushell [30]. The first one should be
used when sections are shorter than 8 cycles.
Each periodogram has its own characteristics, whose

discussion is beyond the scope of this article. Everything
that can be explained in the “normal” periodograms (not
serial) also applies in this serial application. Before
explaining the differences and characteristics of these
two periodograms we should insist on a common feature
of all periodograms, for a proper interpretation. This is

the fact that the values shown in a periodogram are
obtained independently of each other, and not in a
jointly way. This means that if in three adjacent points
of a periodogram corresponding (for example) to periods
of 1200, 1210 and 1220 minutes have values of 35, 38
and 42% of the total variance, that does not mean that
each of these periodicities are present on the wave with
such percentages of variance simultaneously. The true
interpretation is that when a period of 1200 minutes is
tested, this period explains 35% of the total variance, and
if we perform a new (and different) analysis with a
period of 1210 minutes, then it explains 38%. Therefore,
each tested period is an independent test, performed
over the same dataset, which obliges to apply the
Bonferroni correction (explained above) on the probabil-
ity level required in each test (or point) to maintain the
desired global level of significance.
It should be noted that in the case of serial Fourier ana-

lysis (graphic matrices) several frequencies are also shown
simultaneously for each section, but in that case the differ-
ent harmonics are calculated simultaneously and orthogon-
ally, so that the percentages of variance correspond to the
distribution of the total variance of series, among the differ-
ent harmonic components, while in the periodogram this is
not so. Although the two periodograms generate a Chi2

Figure 9 Serial analysis of the motor activity of a rat maintained under LD cycles with a period of 21 hours. The graph shows the
simultaneous presence of the animal's own endogenous component (T2 = 1540) and the component entrained by the light (T1 = 1260). Sections
are s = 1440 min and l = 7200 min. The analysis consisted in a linear model including simultaneously the two sinusoidal components (T1 and T2).
In the graphs are represented: the total variance explained by the model (left), the variance explained by each component (3rd graph, black = T1,
red = T2) and the percentage of variance explained by T2 with respect to the sum of two components (right).
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type variable, one can transform these values in percentages
of explained variance, which is much easier to interpret.
The first periodogram to consider will be the perio-

dogram of Sokolove-Bushell (SBP). Its main feature is a
high sensitivity to the repeatability, cycle by cycle, of any
rhythmic pattern, even if far from sinusoidal. The formula
used for the calculation of QP is

Qp ¼
KN∑P

h¼1 �yh−�yð Þ2

∑N
j¼1 yj−�y

� �2

where P is the period expressed in samples, �yh are the col-
umn means after arranging the series (of N elements) in an
array of P columns, and K is the number of rows of the
resulting array. QP follows a Chi

2 distribution with as many
degrees of freedom as cycles in each section (see a descrip-
tion of the method of calculation in [30]). From the value
of QP, the amount of variance explained by the rhythm can
be calculated [31] just multiplying QP by 100/N.
The Lomb-Scargle periodogram (LSP) has been pro-

posed in the field of Chronobiology more recently and
has some outstanding features: It can be applied to
series with non-uniform sampling, is very sensitive to
the presence of any rhythmicity and is not affected by
the subharmonic components of the principal one. This
means that if there is a rhythm of 500 min in the series,
logically, there will also be periodicities with T equal to:
2 · 500 = 1000, 3 · 500 = 1500, 4 · 500 = 2000 minutes, etc.
In the SBP these periodicities would appear in the graph,
while in the LSP, they will not be present, and only the
500 minutes component will clearly be shown. There is
abundant literature [32,33] where you can find the de-
tails of the methodology used. The following formulae
are used to compute the LSP, P(ω):

P ωð Þ ¼ 1
F

CY :CY
CC

þ SY :SY
SS

� �
; ω ¼ 2π

T

with T expressed in samples, F is two times the variance
of y, and the sums are (for simplicity, in the next formu-
las, ∑N

i¼1⋯≡∑⋯Þ:

CY ¼ ∑ yi−�yð Þ cos ω ti−τð Þð Þ

SY ¼ ∑ yi−�yð Þ sin ω ti−τð Þð Þ

CC ¼ ∑cos2 ω ti−τð Þð Þ

SS ¼ ∑sin2 ω ti−τð Þð Þ

the correction term τ is calculated for each ω:

τ ¼ 1
2ω

arctan
∑sin2ωti
∑cos2ωti

The maximum value of P(ω) is (N-1)/2, and the
threshold for a level of significance equal to p (including
the Bonferroni correction) is

Pp ¼ N−2
2

1− 1−pð Þ 1
N

� � 2
N−3

When using relatively short sections, there is a slight
underestimation of the long periods. To avoid this we can
use the “generalized floating mean” LSP [34] using the
same formulae but with several changes: before the calcula-
tions , the values yi must be normalized to N(m= 0,s = 1),
and

τ ¼ 1
2ω

arctan
∑sin2ωti−2∑sinωti∑cosωti

∑cos2ωti−∑2sinωti þ ∑2cosωti

CY ¼ ∑yicosω ti−τð Þ

SY ¼ ∑yisinω ti−τð Þ⋯

Pp ¼ 1− 1−pð Þ 1
N

� � 2
N−3

All other formulas remain the same as in the previous
periodogram. The maximum value of P(ω) is 1, when
the periodicity accounts for all the variance of the series;
because of this, 100· P(ω) can be interpreted as the per-
centage of explained variance.
In both methods the periodograms can be normalized

to have the maximum equal to a constant. This facili-
tates the identification of the highest peak in each sec-
tion, but has the drawback that it does not reveal the
changes in the degree of presence of rhythmicity along
all the serial analysis. Another possibility that is derived
from this type of analysis is to represent, for each sec-
tion, the period value at which the maximum occurs,
thus allowing one to follow the evolution of the main
period over time (Figure 10).
In the case that several frequencies are expressed, this

technique allows to clearly visualize its evolution, as
shown in Figure 11, in which, again, individual peaks
don’t represent the degree of simultaneous presence of
frequency components but its significance when ana-
lyzed separately in the series. To study the degree of
simultaneous presence of two components of known fre-
quencies, one should apply the procedure described at
the end of the previous section.
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Derived and/or special magnitudes and variables
The number of variables that can be studied in a serial
analysis is virtually unlimited, since it is possible to de-
fine a multitude of indices and variables from those
already indicated or others different, depending on the
properties under investigation. As example, a few cases
will be discussed.
One case is the duration of the activity phase or alpha

phase. It can be expressed in absolute terms or as a per-
centage with respect the duration of the cycle. To calcu-
late the length of the alpha phase, one can calculate the
difference between the positive and the negative flank,
as already calculated above.
Some authors determine the degree of entrainment,

expressing the portion of activity that takes place during
a certain part of the light cycle [35]. To calculate this
value, one uses sections with a length and step equal to
the period of the cycle of illumination, and then one cal-
culates the amount of activity in the first half of the sec-
tion, with respect to the activity recorded in the entire
section.
Other specialized variables for actigraphic data can be

calculated and represented in a sequential manner like

those proposed by Van Someren et. al. [36] to study the
activity-rest cycles. The IV (intradaily variability) assesses
the fragmentation of the rhythm, based on the frequency
and extent of transitions between active and inactive
hours. Assuming a sampling interval of 1 h, the IV vari-
able is calculated by the formula:

IV ¼ N
N−1

∑N
i¼2 yi−yi−1ð Þ2
∑N
i¼1 yi−�yð Þ2

This index has proved to be useful to follow the effect
of treatments in demented patients in long periods of
time, and because of this, it is well suited for its serial
application.
The RA (relative amplitude) is the other proposed

index, as a non-parametric alternative to the estimation
of the sinusoidal amplitude. RA is calculated by the for-
mula:

RA ¼ M10−L5
M10 þ L5

Where M10 and L5 are the activity values for the most
active 10 hours period and the least active 5 hours

Figure 10 Motor activity of a rat submitted to different constant light intensities. The serial periodogram is shown on the right; the
different light intensities are shown on the left. The periodogram used was the Lomb-Scargle with a section of 10 days length and a step of
1 day, and it is represented in a gray scale. The red overpainted line corresponds to the daily estimated period (maximum of the periodogram).
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period in the average 24 hours pattern (sections should
include 5 or more cycles). This index provides a good
indication about the degree of coupling between the activ-
ity rest cycle and the external zeitgeber (light–dark cycle).

Wavelet analysis
The wavelet analysis is a relatively new technique for
analyzing a process in time and frequency simultan-
eously. Its main advantage is that the process does not
require the date to be stationary or to have a constant
spectral structure, so it is especially suitable for the ana-
lysis of rhythmic processes whose characteristics vary in
time. Although there is not a serial analysis technique,
the calculation methodology has many similarities to this
type of analysis, so here we will make brief reference to
these techniques and refer the reader interested in them
to the extensive mathematical literature existing and
more specifically to two recent articles [36,37] on its ap-
plication in chronobiology.
Its application in chronobiology is scarce and there is

no clear consensus on how to implement this technique.
In addition to the articles mentioned, early studies were
conducted in the late 1990s in which wavelet analysis

was used for the characterization of ultradian rhythms
[38], for monitoring phase changes [39] or for signal rec-
ognition [40] and more recently in studies on variations
of the period [41].
The analysis is performed by dividing the series in dif-

ferent sets of sections with lengths that are half of the
previous one, and their associated frequencies will
double. In each resulting set of sections a wavelet with
the same length of the section is applied to the data by
cross-multiplying their terms. Wavelets are shrunk or
lengthened to fit the section length. They are not sinu-
soids and have very characteristic waveforms that form a
set of orthogonal functions with a domain of existence
limited by the length of each section (this interval de-
fines the “support” of the wavelet). This type of analysis
has a clear discrete character (DWT Discrete Wavelet
Transform), so it could be considered similar to per-
forming various serial analyses with non-overlapping
sections with a different length and step (each length is
associated to a frequency) in each analysis.
Another type of the wavelet analysis that will be

discussed here is primarily used to locate markers of the
rhythm phase (start of activity, central point, etc.). This

Figure 11 Motor activity record of a rat submitted successively to LD: T = 23 and DD. The serial periodogram is shown on the right. The
periodogram used was the Sokolove-Bushell with a section of 20 days length and a step of 1 day, and the percentage of explained variance is
represented in a color scale shown below. The presence of two components is clearly visualized during T23, changing to a unique rhythm in DD
with an intermediate period.
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variant is the continuous analysis (CWT, Continuous
Wavelet Transform) which is just the convolution of a
specific wavelet over the data series [42]. It uses a col-
lection of identical wavelets but with lengths (periods)
continuously decreasing. So, one obtains a continuous
series of convolutions for the different periods studied.
From all possible periods, the one that corresponds to
the period of the process studied is selected. Regarding
the choice of the wavelet, there is a wide variety of
them, and the selection of the most suitable type de-
pends on several factors, including the similarity with
the studied wave pattern, which would be the one with
most relevance. It is also possible to define a wavelet
specially “tailored” to the data. If the wave pattern is not
known, it may be defined as a sine wave modulated by a
Gaussian function such as shown in Figure 12B. Using a
function of this type, with a support for 3 full cycles,
one can obtain a convolution g(t) from which the phase
indicators can be detected. To do so, a smoothing func-
tion must be applied to the resulting convolution g(t) to
remove the effect of noise and then a threshold must be
set to detect the beginnings of activity, when g(t) crosses
the threshold upward. The indicator of the central point
of each cycle corresponds to the maximum of g(t), as
shown in Figure 12C. In Figure 13, we have analyzed 10
registers of motor activity of rats subjected to continu-
ous phase changes of the lighting cycle, using the tech-
nique described. The graph shows the good tracking of
the individual phases, and also (at right side) the result
of the Rayleigh z test [22], to verify the homogeneity of

the daily phases in the group of rats studied. This test
estimates the module (r) of the average vector of the
unit vectors corresponding to the phases of each indi-
vidual using the formula:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2 þ �b

2
q

ai ¼ cosθi; bi ¼ sinθi

where ai and bi are the orthogonal unit components of
each phase angle θi. The higher the value of r the
greater degree of homogeneity in phases. The signifi-
cance threshold of r, for a probability p = 0.05, can be
calculated by the formula:

r 0:05;vð Þ ¼ 1:6732268=v0:492018;

where v is the number of cases.

Practical application and conclusions
The serial analysis of long duration data series includes a
wide variety of methods, such as we have seen, and it is
not easy to find applications capable of performing these
calculations in a compact form. Consequently, one often
needs to develop specific programs or routines to per-
form the calculations.
There is a specific application for chronobiology that

can perform all the methods described in this article,
with the exception of wavelets. This is the application

A

B

C

D

E

Figure 12 Wavelet analysis: procedure. The original series A, from a real motor activity record D is convolved with a sinusoidal-Gaussian-
modulated function B obtaining the curve C after numerical smoothing. For each resulting cycle in C, three characteristic points are defined:
when crossing zero upwards (the onset), the maximum (the middle) and when crossing zero downwards (the offset). In E, the evolution of these
points cycle by cycle.
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“El Temps” by Díez-Noguera [http://www.el-temps.com],
with which most graphics of this article were produced.
Other programs which may be used as the basis for
such calculations are some classical ones for the ana-
lysis of signals, such as TISEAN by Hegger, Kantz &
Schreiber [http://www.mpipks-dresden.mpg.de/~tisean/]
which includes spectral analysis, periodograms, and a
powerful set of tools for nonlinear analysis. There are
also a number of specific applications for chronobiology
and biological rhythms analysis which, in general, focus
on the adjustment to sinusoidal functions, cosinor,
periodograms, actograms and waveform analysis. Al-
though these applications are not designed specifically
for serial analysis, they may be very useful to perform
the analysis of successive sections manually. Below is a
list of programs (in alphabetical order) that can be used
for this purpose:

“ActogramJ” Java app by Schmid, Helfrich-Föster &
Yoshii [http://actogramj.neurofly.de],
“BRASS” Excel app by Millar [http://millar.bio.ed.ac.uk],
“Chronos-Fit” by Lemmer [http://www.fileguru.com/
Chronos-Fit/info],
“Circadian software” by Refinetti [http://www.circadian.
org/main.html],

“ClockLab” from Actimetrics [http://www.actimetrics.
com/ClockLab/],
“CronoLab” by Mojón, Fernández & Hermida [http://
www.tsc.uvigo.es/BIO/Bioing/ChrLDoc1.html],
“El Temps” by Diez-Noguera [http://www.el-temps.com],
“Free chronobiology software” by Hut [http://hutlab.nl],
“The Chronobiology Kit” from Stanford Software
Systems [http://query.com/chronokit/],
“Time Series Analysis-Cosinor” from Expert Soft
Technologie [http://www.euroestech.net/index.php].

In the case one prefers to write his/her own programs,
one can use any of the many existing programming lan-
guages -- such as Delphi, Basic, C++, C#, and Java --,
several of which include programming environments
that facilitate the work very much. A serious disadvan-
tage is the requirement of specific programming skills,
which most users do not possess. For this purpose there
are mathematical applications that use a special language
for commands, operations and functions, such as
MATLAB, allowing the execution of small programs or
scripts that are extremely useful for such calculations.
This language includes a great number of predefined
functions (statistics, graphs, spectral analysis, regression,
etc.) that facilitate the realization of the calculations
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Figure 13 Wavelet analysis: result. Shown is the representation of the evolution of the phases (continuous lines) calculated with the
convolution described in Figure 12, on 10 registers of motor activity of rats subjected to continuous phase changes of lighting cycle (dashed
line). At right, the result of the Rayleigh z test, to verify the homogeneity of the daily phases, dashed line is the threshold for significance (p = 0.05).
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automatically. Because it is a very high level language,
many processes are preprogrammed and ready to use,
which saves programming time and effort. It is worth to
point out that MATLAB is a language that can be han-
dled relatively easily, at very acceptable levels without
high expertise, and this explains its great popularity and
acceptance in the field of computing and numerical ana-
lysis. The existing large user community has developed
many applications that are freely available in the Inter-
net, and in many cases it is not difficult to find a pro-
gram that suits one’s specific needs.
Another similar application is Mathematica, with simi-

lar characteristics as MATLAB but with different pro-
gramming strategies. Both programs have additional
libraries that extend the capabilities of analysis to spe-
cific fields, such as statistics, waveform analysis, wavelet
analysis, filters design, etc. all of them very useful for
our purpose of analysis.
In short we can say that the serial analysis is a tool of

the first order to analyze the rhythmic characteristics of
long time series, in which rhythm properties evolve over
time. In fact it is nothing else that the repeated application
of conventional rhythm analysis techniques along different
sections of a time series. As already mentioned in this art-
icle, the correct application of these methods requires
some considerations and precautions, already mentioned
above, to avoid the commission of errors, as when choos-
ing the length of sections and the step size. Likewise the
interpretation of the results must be conducted cautiously
under the knowledge of the specific characteristics of each
technique, as in the case of Fourier or spectral analysis.
In general terms, one can say that when a time series

includes more than 20 successive cycles, it is necessary
to use the serial analysis to see the evolution and
changes that have taken place during that time period. If
this analysis is not performed and the whole data series
is treated as a single unit, the presence of errors is highly
likely due to the non-stationarity of the process, since
most of the conventional analysis methods are defined
for stationary series whose properties remain constant
throughout the investigated period, a situation that is
very rare in living beings.
Although most of the techniques described here have

a rather complex mathematical basis, the existence and
availability of numerous computer applications, more or
less specific, greatly facilitates the practical implementa-
tion of these methods. We believe that the systematic
application of these analytical techniques, would im-
prove the description of many experimental observations
allowing a more accurate analysis.
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