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Abstract

Daily feeding schedules generate food anticipatory rhythms of behavior and physiology that exhibit
canonical properties of circadian clock control. The molecular mechanisms and location of food-
entrainable circadian oscillators hypothesized to control food anticipatory rhythms are unknown.
In 2008, Fuller et al reported that food-entrainable circadian rhythms are absent in mice bearing a
null mutation of the circadian clock gene Bmall and that these rhythms can be rescued by virally-
mediated restoration of Bmall expression in the dorsomedial nucleus of the hypothalamus (DMH)
but not in the suprachiasmatic nucleus (site of the master light-entrainable circadian pacemaker).
These results, taken together with controversial DMH lesion results published by the same
laboratory, appear to establish the DMH as the site of a Bmall-dependent circadian mechanism
necessary and sufficient for food anticipatory rhythms. However, careful examination of the
manuscript reveals numerous weaknesses in the evidence as presented. These problems are
grouped as follows and elaborated in detail: |. data management issues (apparent misalignments of
plotted data), 2. failure of evidence to support the major conclusions, and 3. missing data and
methodological details. The Fuller et al results are therefore considered inconclusive, and fail to
clarify the role of either the DMH or Bmall in the expression of food-entrainable circadian rhythms

in rodents.

Review nucleus (SCN) [1,2]. This pacemaker mediates entrain-
Circadian thythms in mammals are regulated by a master ~ ment of circadian rhythms to daily light-dark (LD) cycles,
circadian pacemaker located in the suprachiasmatic  but is not necessary for entrainment of circadian rhythms
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to daily feeding schedules [3-5]. Rats, mice and other spe-
cies entrained to a LD cycle and restricted to a single meal
(typically 2-4 h duration) at a fixed time each day exhibit
increased locomotor activity beginning 1-3 h prior to
mealtime. Once established (typically within a week of
scheduled feeding) this daily rhythm of food anticipatory
activity persists when meals are omitted for 2 or more
days (i.e., activity remains concentrated near the expected
mealtime). Food-anticipatory rhythms are most readily
generated by feeding schedules with a stable periodicity in
the circadian range (~22-31-h), and are not affected by
complete ablation of the SCN. Therefore, a food-sensitive
circadian timing mechanism regulating behavior must
exist in the brain or periphery outside of the SCN [6-8].
This mechanism has been conceptualized as a food-
entrainable oscillator or pacemaker, analogous to the
light-entrainable pacemaker in the SCN.

Efforts to localize food-entrainable circadian oscillators
for behavior began over 30 years ago, but until the turn of
the 21st century were limited to a few laboratories, and
yielded primarily negative findings. With the advent of
powerful new molecular biological techniques, and recog-
nition of the importance of food as a time-cue for circa-
dian oscillators outside of the SCN [9,10], more
laboratories have undertaken work on the neurobiology
of food-entrainment. One laboratory (Saper and col-
leagues) has now published two studies that, taken
together, appear to have succeeded in localizing a brain
site critical for the expression of food anticipatory
rhythms. In the first study, Gooley et al [11] reported that
ablation of ~70-90% of the dorsomedial hypothalamus
(DMH), by localized injection of the neurotoxin ibotenic
acid, severely attenuated or eliminated food anticipatory
rhythms of activity, sleep-wake and temperature rhythms
in rats. In the second study, Fuller et al [12] exploited gene
knockout and rescue technology to show that food-antic-
ipatory activity and temperature rhythms are absent in
mice lacking the circadian clock gene Bmall, and are res-
cued by virally-mediated restoration of Bmall expression
selectively in the DMH (but not in the SCN). The two
studies appear to establish that the DMH contains Bmall-
dependent circadian oscillators that are both necessary
and sufficient for the expression of food-entrainable
behavioral and temperature rhythms in rodents.

These studies potentially constitute a seminal demonstra-
tion of localization of function in the mammalian brain.
However, despite considerable effort, other laboratories,
using rats or mice, have so far been unable to confirm
either the lesion or the gene knockout results [13-18].
Consequently, the two studies demand close scrutiny.
Commentaries on Gooley et al [11] are already available
[19,20]. Here we present a comprehensive analysis of the
Fuller et al [12] study, with major points of concern
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grouped and numbered for clarity. In all references to fig-
ures in the Fuller et al text, the figure number is spelled out
(e.g., Figure one). Supplementary figures in Fuller et al
will be identified by the letter 'S'.

I. Data management issues

A critical task for peer reviewers is to evaluate whether the
evidence presented in a new study supports the authors'
substantive conclusions. Before undertaking this task, the
reviewers must have confidence that the evidence has
been presented both fully and accurately. Accuracy is gen-
erally assumed, unless there are clear indications (e.g.,
internal inconsistencies) that errors may have occurred.
Inspection of the figures provided in Fuller et al [12] sug-
gests that there may be significant errors in the alignment
and labeling of data displays critical to evaluating the
claims of the study.

la. The Fuller et al [12] paper was published with three
multi-panel figures in the main text, and four supplemen-
tary figures available on-line. Figure three B in the main
text is an 'actogram style' double-plot of core body tem-
perature data intended to illustrate recovery of food antic-
ipation in a Bmall-/- mouse by adeno-associated viral
(AAV)-BMALL injection into the DMH. Figure S3B in the
original supplementary materials was another double-
plot of body temperature intended to illustrate failure of
recovery of food anticipation following injection of AAV-
BMALT1 into the SCN. However, the two double-plots (Fig.
1 here) were clearly the same data, differing by ~3 h in the
start-time, and in the placement of a red line intended to
denote the onset of daily mealtime. Notably, the two
charts appear to be identical except for an ~3 h segment
just prior to mealtime on the second to last day of
restricted feeding (Fig. 1; see the blue arrow in panel S3B).
Five months after publication (Science, Oct. 31, 2008),
the duplicate double-plot in the on-line supplementary
materials was replaced by another plot, accompanied by
the following Correction: "Figs. S2 and S3 have been
replaced. In Fig. S2, panels B and C were reversed; the legend
for panel B described panel C, and the legend for panel C
described panel B. In addition, Fig. S3B contained an error, a
result of mistakenly using an incorrect file to make the plot. The
incorrect file was an incomplete working file obtained from the
same animal and experiment as shown in Fig. 3Bin the main
text, but with an incorrect start time (which advanced the
phase). Fig. S3D, in which the trace is derived from the data
shown in fig. S3B, was also incorrect." The unidentified
‘error' presumably refers to the mismatch between the two
figures. It is not clear how the duplicate plots could appear
to be identical except for one critical segment immediately
preceding mealtime. This could be a peculiarity of the
algorithms used to generate the 'actogram' style plots, but
neither the original paper nor the supplementary materi-
als provide information on the plotting conventions of
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Duplicate 'actogram style' charts (modified, with permission, from Fuller et al [12]© (2008) AAAS http://
www.sciencemag.org, Figures 3B and S3B, original supplementary online materials). The blue arrow indicates the

~3-h section that differs between the two versions of these data.

this software. Regardless, the fact that a significant mis-
alignment occurred raises concerns about the accuracy of

other figures in the paper.
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1b. Careful examination of the other 'actograms' and aver-
age waveforms in Fuller et al suggest that other alignment
errors may well have occurred. One striking indicator of
possible errors is the unusual direction and rapidity of
change of body temperature in several of the waveforms.
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Average waveforms of body temperature in food restricted mice (modified, with permission, from Fuller et al
[12]©(2008) AAAS http://lwww.sciencemag.org, Figure S3C). In both waveforms, temperature peaks prior to mealtime

and begins dropping before mealtime, with no evidence of feeding induced thermogenesis. See also Fig. 3C (adapted from Fuller

et al Figure S3C).
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According to the figure legends, Figure two and corrected
Figure S3 depict waveforms of body temperature averaged
over days 10-14 of 4-h/day restricted feeding. Figures two
A and C (Fig. 2 here) and S3C (Fig. 3 here) illustrate a food
anticipatory rise of body temperature in heterozygous or
DMH-rescued AAV-BMAL1 null mutant mice. In Figures
two A and C, body temperature peaks about 1-2 h prior
to mealtime, and then drops monotonically during meal-
time. In Figure S3C, temperature peaks at the onset of
mealtime, and then falls precipitously during mealtime.
These waveforms appear to violate a fundamental meta-
bolic consequence of food intake. When small rodents
eat, there is a significant rise of brain and body tempera-
ture, reflecting a thermogenic effect of food intake and
associated activity [21]. This is normally readily apparent
in measures of temperature from brain, muscles and the
intraperitoneal cavity, and represents a physiological sig-

Bmal1+/-
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Figure 3
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nature of mealtime (for examples from rats and mice
recorded in other laboratories, see Figs. 4 and 5 here and
[22]). The absence of this thermogenic effect of food
intake in Fuller et al could mean any of the following: 1.
the mice may not have been fed on these days (unlikely,
given that locomotor activity, and therefore temperature,
if high prior to mealtime, normally remain elevated at
least through the expected mealtime), 2. the data may be
misaligned, and the waveforms shifted to the left or the
right of where they should be relative to mealtime, or 3.
rather than body temperature, the data may actually be
locomotor activity, which typically does decrease rapidly
while rats and mice eat for an hour or so and then take a
post-prandial pause before eating again. Errors of these
types are not mutually exclusive (e.g., some waveforms
appear misaligned, and others exhibit characteristics of
activity data rather than temperature data). These incon-

32.0 SCN AAV-BMAL1

0 12 24

Actogram-style plots and corresponding average waveforms of body temperature in food restricted mice
(modified, with permission, from Fuller et al [12]©(2008) AAAS http://www.sciencemag.org, Figure S3). For
clarity, we have placed the waveform figures under the corresponding actogram-style figures. According to the text, these 2
waveforms were derived from days 10—14 of restricted feeding. We have aligned the waveforms and corresponding actogram-
style plots, and drawn a blue line through the trough of body temperature that occurred (without explanation) in the middle of
mealtime in waveform C, and through the peak in temperature that occurred in the middle of mealtime in waveform D.
Clearly, the peak in temperature in D is not reflected by the density of the same data in B. In addition, the temperature curve
in both waveforms is a mirror image on either side of the blue line. Therefore, in the actogram-style plots of the same data, the
dark sections (indicating higher temperature) should also be symmetrical on either side of the blue line. They are not. In acto-
gram-style plot B, high temperature is indicated during the first -2 h of mealtime, yet the corresponding waveform shows a
lower temperature (likely below the daily mean) during that time.
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The thermogenic effect of midday feeding in rats (R.
Mistlberger, B. Kent, G. Landry, unpublished). Group
mean average waveforms of core body temperature meas-
ured via implanted transponders in rats (N = | ) under adlib
food access (thin black line), 4 h/day restricted feeding (heavy
line = day|l, heavy green line = day 21), and total food depri-
vation (heavy red line = day|). Temperature rises dramati-
cally within 10 min of meal onset on days | and 21 of
restricted feeding, and remains elevated throughout meal-
time on the meal omission day after day 21.

sistencies raise questions about the reliability of the data
analysis procedures used in the study.

1c. Data misalignment in Fuller et al is also indicated by
mismatches between waveforms and actogram-style plots.
In Figure S3 (the Corrected version on-line) the wave-
forms depicted in panels three C and D (Fig. 3C, D here)
are said to have been derived by averaging the last 4 days
of food restriction depicted in the corresponding acto-
gram-style temperature plots (lines 10-14 on panels three
A and B, respectively). However, neither temperature
waveform matches its temperature actogram-style plot.
The actogram-style plot in panel A clearly shows a period
of high temperature for at least the first 2 h (and probably
3 h) of mealtime, followed by low temperature. The
derived average waveform (panel C, below it) shows a
rapid drop of temperature over the first 2 h, and then arise
to half maximal by hour 4 of mealtime. The actogram-
style temperature plot in panel B shows high temperature
during hours 1-2 of mealtime, and then lower tempera-
ture during hours 3-4, yet the derived average waveform
shows temperature that is much lower during the first 1-
1.5 h of mealtime, and then rises to maximal values dur-
ing the middle of mealtime, with sustained high levels
until after mealtime. The average waveforms and acto-
gram-style plots exhibit clear discrepancies that could be
caused if one is misaligned relative to the other. This mis-
alignment issue exists regardless of whether these are tem-
perature data or are activity data mistakenly labeled in
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The thermogenic effect of midday feeding in mice,
adapted from Moriya et al [16]. Group mean average
waveforms of core body temperature measured via
implanted transponders in mice (sham lesion = open circles,
DMH lesion = closed circles) under 4 h/day restricted feed-
ing in LD (days 2 and |3) and total food deprivation in DD.
Temperature rises dramatically within 15 min of meal onset
on days 2 and |3 of restricted feeding, and remains elevated
throughout mealtime on the meal omission day.

units of temperature (a serious concern for Figure 3A and
3Q0).

1d. The data illustrated in Figure S3 (Fig. 3 here) have
additional characteristics indicating possible mislabeling.
Panels S3A and S3C are identified in the supporting
online materials as temperature data from a heterozygous
mouse on restricted food access in DD. This mouse exhib-
its a robust 'subjective night' of ~10-12 h duration, recur-
ring every day beginning ~5 h after mealtime. This precise
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24-h rhythm is presumably driven by the SCN (the
authors comment on the absence of a 'circadian rise in body
temperature during the presumptive dark cycle, CT12-24', in
reference to Figure two C in the main text). However, the
published literature on food-restricted mice in DD (e.g.,
[22-25]) indicates that the SCN-driven rhythm either free-
runs without entraining to mealtime, or entrains to meal-
time with a positive phase angle. Fuller et al [12] fail to
comment on the peculiarity of their data, relative to
results of other mouse studies. A similar extended subjec-
tive night is evident in the data from the SCN-rescued
AAV-BMAL1 null mutant mouse illustrated in Panels S3B
and S3D (Fig. 3 here). The rhythms in these two mice look
strikingly similar to the rhythms of wildtype mice
entrained to a 24 h LD cycle, with food restricted to the
middle of the light period. The authors indicate in the text
that in a preliminary experiment, mice were fed at ZT4-8
in LD 12:12. Although the results of that experiment were
not reported, the fact that the authors apparently did run
a food restriction experiment in LD raises concern that
data files were mislabeled and that mice recorded in LD
were mistakenly used to represent mice recorded in DD.

2. Data inadequate to support major claims

The preceding analysis raises legitimate concerns about
data management in Fuller et al [12]. In the next section,
we suspend judgment on this issue, and assess whether
the data, taken at face value, support the authors' substan-
tive conclusions.

2a. One major claim critical to the substantive conclu-
sions of Fuller et al is that injection of AAV-BMAL1
directly into either the SCN or the DMH of Bmall-/- mice
selectively restored Bmall expression in these structures,
and selectively rescued light-entrainable and food-
entrainable circadian rhythms, respectively (a double dis-
sociation). To demonstrate that restoration of Bmall
expression was indeed spatially restricted to the target
structure, it is necessary to provide autoradiographs of
Bmall expression in one or more whole coronal sections
of the brain, showing expression in the target structure
and no expression outside of this structure in brain
regions that normally express Bmall in wildtype mice at
that phase of the DMH rhythm. Figure S4 in Fuller et al
shows Perl expression in whole brain coronal sections,
but the autoradiographs provided to illustrate Bmall
expression in AAV-BMAL1 mice were cropped to include
only the target area (either the SCN or the DMH; Figures
one F, two H, $4D, and S4H; see Fig. 6 here). In many
studies it is acceptable to present images cropped to focus
on a particular target region. However, the claim of the
Fuller et al paper is that Bmall expression in AAV-BMALI1
mice was limited to the SCN or DMH. Consequently, the
appropriate standard of evidence is to show selectivity.
The critical molecular evidence for regionally selective res-
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cue of Bmall gene expression is therefore missing from the
paper.

Given the authors' claim that Bmall expression was selec-
tively restored in the DMH, the Perl autoradiographs in
Figure S4 (Fig. 6 here) are puzzling. Null mutations of
Bmall result in very low expression of Per1 throughout the
brain [26]. However, in Figure S4, Perl expression outside
of the SCN and DMH is very similar if not identical in the
examples provided from Bmall+/-, Bmall-/- and AAV-
BMALI1 mice. This similarity is particularly striking by
comparing panel S4F and S4G (Fig. 6E, G here), identified
as Bmall+/- and AAV-BMAL1 null mutant mice, respec-
tively. In the brain represented by panel G, the viral vector
was microinjected into the DMH, but Perl expression is
evident in numerous regions outside of the hypothala-
mus, and looks equivalent to the distribution and inten-
sity of mRNA signal in the heterozygous mouse (panel E),
and very different from comparable autoradiographs in
the original Bunger et al [26]Bmall knockout study. The
autoradiographs therefore appear at odds with the claim
in the text that Bmall expression in this mouse was lim-
ited to the DMH.

2b. A second major claim critical to the substantive con-
clusions of this paper is that food anticipatory rhythms of
activity and temperature in Bmall-/- mice were rescued by
intra-DMH injection of AAV-BMAL1. However, the 'acto-
gram' style double-plot of body temperature that is pro-
vided as evidence of functional rescue (Figure three B; see
Figs. 1 and 7 here) illustrates only the food restriction
days, and omits any baseline data from ad-lib food access
days. On the food restriction days that are shown, temper-
ature rises before mealtime, i.e., it displays a rhythm with
an anticipatory phase angle. To interpret these data, it is
necessary to see activity and temperature during ad-lib
food access PRIOR TO the feeding schedule. Without
these baseline data, we do not know whether the rhythms
evident during food restriction were already present prior
to food-restriction, with a phase that happened by coinci-
dence to be anticipatory to the stated mealtime during
food restriction. The critical behavioral evidence for func-
tional rescue of food-entrained rhythms is therefore miss-
ing from the paper.

2c. A third claim critical to the substantive conclusions of
this paper is that the food anticipatory rhythms rescued in
null mutants receiving AAV-BMAL1 in the DMH were
'true’ circadian rhythms, because, as stated by the authors,
these rhythms persisted "during a 24-h fast at the end of
restricted feeding, demonstrating the circadian nature of the
response" (see panel 3B, Fig. 7 here). However, 24 h does
not constitute a test of rhythm persistence. A 24 h food
deprivation test is no different from a regular day of food
restriction. To establish that a food anticipatory rhythm is
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Bmall and Perl expression in a Bmall+/- control mouse and a Bmall-/- mouse that received intra-DMH AAV-
BMALI injections bilaterally (modified, with permission, from Fuller et al [12]®© (2008) AAAS http://www.sci-
encemag.org, Figure S4). Bmall expression was restored bilaterally and symmetrically by AAV-BMALI injections into the
SCN (Panel D) or DMH (panel H) in Bmall-/- mice. The panels do not include other structures that normally express Bmall in
control mice to confirm that Bmall expression was restricted to the SCN or DMH in null mutants. Panels E and G illustrate
Per! expression in full coronal sections from a Bmal[+/- control mouse and a Bmall-/- mouse that received an intra-DMH

AAV-BMALI injection.

the output of a circadian oscillator, and not an hourglass
process, food must be removed for at least 2 circadian
cycles. This is easily tolerated by rats, but may not be well
tolerated by mice, particularly metabolically compro-
mised mutant lines, such as Bmall-/- mice. Nonetheless,
the data critical to 'demonstrating the circadian nature' of
food anticipation is the second day of food deprivation,
not the first. This study does not include a second day of
food deprivation. Therefore, contrary to the authors'

claim, this study does not demonstrate the circadian
nature of food anticipatory rhythms evident in Bmall-/-
mice receiving DMH injections of AAV-BMALLI.

2d. A fourth major claim of this paper is that Bmall-/-
mice do not exhibit an anticipatory rise of body tempera-
ture prior to a 4 h daily meal. To support this claim, data
were averaged across restricted feeding days for individual
mice and displayed as waveforms. However, inspection of
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Actogram-style plots of body temperature during restricted feeding from Bmall-/- mice with or without AAV-
BMALI injections into the DMH (modified, with permission, from Fuller et al [12]© (2008) AAAS http://
www.sciencemag.org, Figure 3). Panel B. Bmall-/- mouse that received AAV-BMALI injection to DMH. Panel C. Bmall-/-
mouse that received no injection. Red line denotes mealtime. Red arrow denotes 24 h food deprivation test.

these waveforms reveals that body temperature is in fact
clearly rising prior to mealtime in both of the two Bmall-
/- mouse examples provided (Fuller et al Figures two C,
S3D; Fig. 8 here). The slope of this rise looks less dramatic
compared to the two heterozygous mice provided as
examples (Fuller et al Figures two A, S3A; Figs. 2 and 4
here), but this is partly because the authors chose to
extend the temperature scale across a wider range in the
Bmall-/- examples than in the heterozygous examples on
the same figures. Thus, in Fuller et al's Figure two A (het-
erozygote) the temperature scale ranges from 34-38°C
degrees, while in Figure two B (null mutant) the tempera-
ture scale ranges from 30-38°C. Similarly, in Fuller et al's
Figure S3A (heterozygote) the temperature scale ranges
from 35-38°C, while in Figure S3D (null mutant) it
ranges from 31-37°C. This has the effect of compressing
the waveform in the Bmall-/- example, reducing the
apparent slope of a regression line drawn through the
temperature waveform prior to mealtime. If the scales are
made equivalent, the waveforms look more similar. The
body temperature waveforms in these Bmall-/- examples
may have more ultradian variation, but body temperature
clearly is rising over the 1-4 hours preceding mealtime.
Moreover, as discussed in Point 1c above, there are strong
indications that the waveform in Fig. S3D (Figs. 3 and 8
here) is misaligned and that temperature rises in anticipa-
tion of mealtime at least an hour earlier than this figure
suggests. The data therefore appear to contradict the stated
claim in the paper.

2e. A critical interpretive issue in any study of food-
entrainable rhythms is whether the animals tested can tol-
erate feeding schedules that limit the amount or duration
of food availability. If the subjects cannot tolerate food
restriction, due to species characteristics or metabolic
effects of lesions or gene manipulations, then attenuation
or absence of food anticipatory rhythms in a particular
group of animals may be inconclusive. Mice are especially
vulnerable to restricted feeding, due to their small size and
high metabolic rate. Consequently, it is standard proce-
dure in food restriction studies of mice to gradually, rather
than abruptly, reduce the duration of the daily meal over
several days. This procedure would seem all the more
important for studies of Bmall-/- mice, given that this
gene knockout is associated with metabolic deficiencies
[27,28] and progressive arthropathy that limits mobility
by 3-4 months age [29]. In Fuller et al [12], and in their
'Reply' [30] to a 'Technical Comment' [15], the wording
indicates that food was abruptly limited to 4 h/day, with-
out a gradual reduction in meal duration, and was placed
on the metal bars of the cage top, requiring the mice to
reach up to bite off pieces to eat. A reasonable concern,
therefore, is that any attenuation of food anticipatory
rhythms in Bmall-/- mice may be secondary to poor
health due to inadequate food intake.

These concerns appear to be warranted. Fuller et al report
that Bmall-/- mice exhibited 'torpor’, i.e., a severe decline
in body temperature at one or more times of day, on one
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Body temperature in Bmall-/- mice during restricted
daily feeding (modified, with permission, from Fuller
et al [12]©(2008) AAAS http://www.sciencemag.org,
Figure 2B, left, and S3D, right). Neither mouse received
AAV-BMALI injections. The black regression lines were
added here.

or more days. The authors state explicitly that Bmall-/-
mice "often slept or were in torpor through the window of
restricted feeding, (emphasis ours) requiring us to arouse
them by gentle handling after presentation of the food to avoid
their starvation and death during restricted feeding". Hungry
mice (even if asleep) will arouse and orient immediately
when the door of their isolation chamber is opened at
mealtime to place food in the cage. A mouse that has to be
physically handled to be aroused is very likely either sick
or profoundly hypothermic (or both). In the original text,
the authors do not report body weight or food intake data.
In their Reply [30] to the Technical Comment [15], the
authors again provide no data, but do state that the heter-
ozygous and null mutant mice ate 85% of ad-libitum
intake during the 4 h daily meals, and that the null

http://www .jcircadianrhythms.com/content/7/1/3

mutants did not lose weight. This is very puzzling, for at
least two reasons. First, even wildtype mice lose body
weight when restricted to 85% of ad-libitum intake (rela-
tive to their starting weight or to ad-lib fed controls). Sec-
ond, and more importantly, if Bmall-/- mice did not lose
body weight, then why did they exhibit bouts of hypother-
mia severe enough to prevent them from arousing sponta-
neously when food was placed in the cage?

There are numerous studies in the literature showing that
wildtype mice and rats typically lose weight when food
restricted, particularly when the duration of food access is
4 h or less. To evaluate whether Bmall-/- mice are some-
how protected from this effect, two laboratories have
independently collected food intake and body weight
data from wildtype and Bmall-/- mice fed according to the
procedure of Fuller et al (4 h/day, food on cage tops). In
one lab (W. Nakamura, personal communication, Dec
2008), the null mutants lost significant weight when the
food was placed on the cage tops during two days of ad-
lib food access (one Bmall-/- mouse had to be taken out
of the procedure). Evidently, even without food restric-
tion, Bmall-/- mice have physical limitations that may
impair their ability to reach food available in standard
cage top food hoppers. Food was therefore placed on the
floor for 5 additional baseline days and 4 days of food
restriction (4 h/day). A 25% weight loss 'endpoint’ crite-
rion was established for termination of the experiment, to
prevent death. Three of 5 Bmall-/- mice reached the 25%
weight loss criterion on day 3 of restricted feeding and one
reached it on day 4. Weight loss in the remaining Bmall-/
- mouse was 18% on day 4. Weight loss in 6 wildtype mice
averaged 7.5% after one day of restricted feeding, and 9%
after 4 days.

In the second lab (J. Pendergast and S. Yamazaki, personal
communication, Jan 2009), two sets of wildtype and null
mutant mice were tested. The first set consisted of 2
Bmall-/- and 5 wildtype mice, of various ages, with body
weights in the 22-28 gm range. These mice were main-
tained in breeder cages with corn cob bedding and nesting
material, in an ambient temperature of 22.5°-25.5°C.
Food was placed on the cage tops within 4.5 cm of the
floor. When food was abruptly restricted to 4 h/day for 4
days, wildtype mice remained within + 2% of starting
weight, while the two Bmall-/- mice lost 8% and 9% body
weight, respectively. The second set consisted of 7 Bmall-
/- mice and 6 age-matched (5-8 weeks) wildtype mice.
These mice were housed in standard recording cages with
locked running wheels, in DD and 22 - 23°C, with food
placed on the cage tops as in Fuller et al. Under these con-
ditions, when food was abruptly limited to 4 h/day for 10
days, the Bmall-/- mice lost weight dramatically, all but
one reaching the 25% endpoint criterion within 3-9 days

(Fig. 9).
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Figure 9

Percent change of body weight in wildtype and Bmall-/- mice during restricted daily feeding (J. Pendergast and
S. Yamazaki, unpublished). Body weights of wildtype mice (grey lines, N = 6) and Bmall-/- mice (red and black lines, N = 7)
during ad-lib food access (days -5 to 0) and 4-h/day restricted food access (days 1-10), expressed as percent change from day
0. A 25% body weight loss was established as an endpoint criterion, at which time mice were returned to ad-lib food access, to
prevent mortality. Only one Bmall-/- mouse (black line) remained above the endpoint criterion over the 10 days of restricted

feeding.

Note that in both laboratories, body weights were meas-
ured after the daily mealtime, which underestimates
weight loss sustained by the mice at meal onset, 20 h after
their last meal. The less severe weight loss evident in the
first set tested by Pendergast and Yamazaki may be a result
of warmer housing conditions (nesting material and
higher cage temperature closer to thermoneutral) that
would have reduced energy expenditure. Notably, Fuller
et al [30] state that cage temperatures in their study were
22 + .1°C, i.e., below thermoneutral for mice (but see
point 3f, below). A third laboratory has also reported
rapid weight loss in Bmall-/- mice abruptly restricted to 3
h food/day [18]. In that experiment, ~80% of the Bmall-/
- mice died under this feeding protocol, but mortality
rates dropped to zero when a gradual food restriction pro-

tocol was adopted. Thus, the impact of food restriction
schedules on body weight in mice is affected by environ-
mental conditions (e.g., cage temperature below ther-
moneutral and availability of bedding) and feeding
protocol (e.g., abrupt versus gradual reduction of food
intake and location of food). Given the methodological
details provided by Fuller et al [12,30], the undocu-
mented statement that their Bmall-/- mice did not lose
body weight is puzzling.

3. Data or methods missing or inconsistent

In this section, we identify data or methodological details
that are missing from the manuscript, but that are
required to support the major claims, to assess the reliabil-
ity of the reported effects, or to replicate the experiments.
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3a. The total number of mice used, and the numbers per
group, are not reported (with one exception; the number
of AAV-BMAL1 mice contributing to the preprandial
group average temperature in Figure two D is stated as 4
in the figure legend).

3b. The age of the mice at the time of behavioral testing is
not reported. Age is a non-trivial methodological detail; as
noted, by the age of 14 weeks Bmall-/- mice develop pro-
gressive arthropathy and become less mobile, which
could attenuate the expression of food anticipatory activ-
ity and impair their ability to retrieve food and eat a suffi-
cient amount in 4 h to remain healthy.

3c. The success rates for injection placement, Bmall rescue
and circadian rhythm rescue are not reported. It is techni-
cally non-trivial to limit spread of microinjected viral vec-
tor to a relatively small target structure (e.g., SCN or
DMH). The degree of difficulty is increased when bilateral
injections are made (both have to limit expression to the
target). To guide replication studies, it would be simple
and appropriate to report the total number of mice receiv-
ing injections, the number in which Bmall expression was
restored unilaterally, bilaterally or outside of the target
area, and the number in each category that exhibited res-
cue of thythms.

3d. Figure two D in Fuller et al [12] is a plot of group mean
body temperature averaged in 1 h time bins for 4 h before
meal onset and 1 h after meal onset, in Bmall+/-, Bmal-/-
and AAV-BMAL1 mice. This graph shows body tempera-
ture rising in anticipation of mealtime in the hetero-
zygous mice and in DMH-rescued AAV-BMAL1 mice but
not in the Bmall-/- mice. As noted, the authors state that
Bmall-/- mice "often slept or were in torpor through the win-
dow of restricted feeding, requiring us to arouse them by gentle
handling after presentation of the food to avoid their starvation
and death during restricted feeding". If some animals were
severely hypothermic (< 31°C) at mealtime, it should be
made clear in the figure legend as to whether these mice
were included in the group averages. If these mice, or cer-
tain days, were not included, this should be indicated and
the exclusion criteria clearly specified.

3e. In the Supplementary methods (p. 4), Fuller et al state
that food restricted Bmall-/- mice tested in LD 12:12 "may
go into torpor during the night and forage more consistently
during the day". However, no rationale or evidence is pro-
vided to support this statement. A reasonable assumption
is that the incidence of torpor would increase with time
since the last meal. Consequently, torpor should be far
more likely to occur during the light period just before
mealtime, particularly in Bmall-/- mice that are supposed
to have no circadian rhythms in LD (e.g., see Fig. 1 in
[12]). The same considerations apply to restricted feeding

http://www .jcircadianrhythms.com/content/7/1/3

in DD. Given the counterintuitive statement made by
Fuller et al with respect to the timing of torpor in Bmall-/
- mice housed in LD or DD, it would be appropriate to
provide the data supporting these statements.

3f. In the Reply [30] to the Technical Comment [15],
Fuller et al state that 'torpor is a normal defense mechanism
used by mice when faced with a 20-h fast in a cool laboratory
(22°C)'. In the 'corrected' supplementary materials (Sci-
ence, Oct 31, 2008), cage temperature is reported as 22 +
.1°C. However, in the previous version of the supplemen-
tary materials (Science, May 23, 2008, also available on-
line), cage temperature was reported as 24 + .1°C. It is not
clear which version is correct, because the change was
made without being noted in the list of Corrections pub-
lished in the Oct. 31 issue.

4. Conceptual issues

The Technical Comment [15] on the Fuller et al paper [12]
included original data showing that Bmall-/- mice exhibit
robust food anticipatory behavioral rhythms if they are
gradually adapted to restricted feeding and if food pellets
are placed in the cage rather than on cage tops, where it
may be difficult for physically frail Bmall-/- mice to reach.
In the Reply [30] to the Comment, Fuller et al make sev-
eral inaccurate or conceptually untenable statements that
may mislead readers less familiar with the methods and
literature in this area of research.

4a. In their studies of food anticipatory thythms, Gooley
et al [11] and Fuller et al [12] used intraperitoneal trans-
ponders to record general cage activity and body temper-
ature by telemetry. Other laboratories have failed to
confirm their findings using overhead passive infrared
motion sensors to measure activity either directed at food
hoppers or occurring anywhere within the recording cage
[13-16]. Fuller et al [30] state that these other studies
‘measure food-seeking behaviors rather than circadian
rhythms'. According to Fuller et al, locomotor activity
measured by overhead motion sensors is a 'food-seeking
behavior' that reflects homeostatic factors (caloric depriva-
tion and hunger), whereas activity and temperature meas-
ured by telemetry are ‘unrelated circadian-driven
physiological responses'. Food anticipatory activity rhythms
exhibited by Bmall-/- mice in other laboratories
[15,17,18] are therefore considered to be the product of a
homeostatic, 'hourglass' process (activity driven by hun-
ger and terminated by feeding), rather than a true circa-
dian oscillator, which Fuller et al claim to have disabled
by Bmall knockout, and Gooley et al by DMH-ablation
[11]. According to Fuller et al, the failure of other labs to
confirm their results is because these labs are 'measuring
different things'.
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However, these arguments are neither intuitive nor con-
sistent with available evidence. It is not at all clear how a
properly functioning transponder in the intraperitoneal
cavity, such as used by Fuller et al, could fail to register
activity that is sufficient to trigger an overhead motion
sensor, such as used by other labs. Thus, it seems unlikely
from the outset that telemetry and overhead motion sen-
sors could be differentially sensitive to homeostatic and
circadian factors. In fact, three labs have conducted direct
comparisons of the two measures in rats [31] and mice
[[16]; M. Sellix and M. Menaker, personal communica-
tion, Nov 2008], and in each case, transponders and over-
head motion sensors produced virtually identical results.
Therefore, the failure of other labs to confirm the results
of Fuller et al [12] and Gooley et al [11] is clearly not
because these labs are 'measuring different things'.

Fuller et al's claim that body temperature is also an 'unre-
lated circadian-driven physiological response' is similarly
unsubstantiated. Fuller et al provide no theoretical ration-
ale for how body temperature could be immune to home-
ostatic factors (caloric deprivation) and thermogenic
effects of eating and ongoing locomotor activity; in fact,
their own data indicate that temperature is drastically
affected by food restriction (their mice were severely
hypothermic). Unsubstantiated claims about the special
value of temperature as a circadian endpoint for studies of
food anticipation are doubly disconcerting, as these may
encourage the unnecessary use of invasive and expensive
procedures (intraperitoneal implants and radioteleme-

try).

4b. Fuller et al [30], in their Reply to the Technical Com-
ment [15], state that 'the assertions made by Mistlberger et al.
concerning the role of the DMH in food-entrainable circadian
rhythms are not accurate. We and Mieda et al. did not find that
the DMH is one of "a number of" brain regions whose clock
gene expression is "synchronized by scheduled feeding." What
was found is that the DMH is the only region of the brain that
has self-sustained cycles of clock gene expression induced de
novo by restricted feeding'. These comments are remarkable
in misrepresenting both the Technical Comment and the
results of Mieda et al [32]. Mieda et al showed that the
DMH in intact, food restricted wildtype mice exhibits a
daily rhythm of mPerl and mPer2 gene expression that
persists during total food deprivation. These data do not
establish that DMH clock gene rhythms are 'self sus-
tained', i.e., generated intrinsically. DMH clock gene
rhythms could be driven by inputs from elsewhere in the
brain or the periphery, related to sensory, motor, meta-
bolic or other correlates of food anticipatory rhythms in
behavior or physiology. There certainly are many other
brain regions in which clock gene rhythms are reset by
restricted feeding and persist during food deprivation [33-
39]. Moreover, Fuller et al's statement that rhythms of Per

http://www .jcircadianrhythms.com/content/7/1/3

gene expression in the DMH are induced 'de novo' by day-
time feeding is itself not accurate. While this seems to be
generally overlooked, Figures 4 and 5 in Mieda et al [32]
clearly show that there is daily rhythm of Per1 gene expres-
sion in the DMH of ad-lib fed mice, with an approximate
3-4 fold increase in expression at ZT13 compared to ZT7.
The amplitude of the rhythm only appears low in those
figures due to the scaling of the y-axis. During restricted
feeding, the phase of the rhythm was shifted and its
amplitude increased at least 2-fold. Thus, DMH rhythms
are reset and amplified, not induced de novo, by daytime
restricted feeding schedules. A rhythm of DMH Perl
expression in ad-lib fed mice has also been reported by
Moriya et al [16], one or two circadian cycles of Per2
expression have been observed in the DMH, arcuate
nucleus and adjacent anterior hypothalamic areas in
mediobasal hypothalamic explants from ad-lib fed
PER2:luc mice [36]. Thus, contrary to Fuller et al's reading
of the literature, the DMH is no different from many other
brain regions that also exhibit daily rthythms of clock gene
expression during ad-lib food access that can be reset and
amplified by restricted feeding schedules.

Conclusion

In this review of Fuller et al [12,30] we have identified a
large number of flaws in the evidence supporting the
claim that a Bmall-dependent circadian mechanism in the
DMH is sufficient to drive food-entrainable rhythms of
activity and body temperature in mice. While numerous,
these flaws are by no means minor. Our overriding objec-
tive here is to promote methodological rigor, to enable us
to arrive at a clear view of how the brain synchronizes
behavior and physiology to daily feeding opportunities.
When new, potentially seminal findings are presented, we
are obligated to scrutinize the evidence carefully to ensure
that it meets standards sufficient to become part of the
foundation for future work. The evidence as presented in
Fuller et al [12] clearly does not meet the necessary stand-
ards.
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