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Abstract

There is an array of numerical techniques available to estimate the period of circadian and other biological rhythms.
Criteria for choosing a method include accuracy of period measurement, resolution of signal embedded in noise or
of multiple periodicities, and sensitivity to the presence of weak rhythms and robustness in the presence of
stochastic noise. Maximum Entropy Spectral Analysis (MESA) has proven itself excellent in all regards. The MESA
algorithm fits an autoregressive model to the data and extracts the spectrum from its coefficients. Entropy in this
context refers to “ignorance” of the data and since this is formally maximized, no unwarranted assumptions are
made. Computationally, the coefficients are calculated efficiently by solution of the Yule-Walker equations in an
iterative algorithm. MESA is compared here to other common techniques. It is normal to remove high frequency
noise from time series using digital filters before analysis. The Butterworth filter is demonstrated here and a danger

inherent in multiple filtering passes is discussed.

Background
Physiological processes in almost all plants and animals
have adapted to the cycles in the environment, be they
daily (circadian), tidal, lunar, synodic lunar monthly or
annual [1]. Oscillatory behavior with periods of less than
24-h, termed ultradian, are also commonly found, occa-
sionally embedded in circadian or other rhythms [2].
This adaptation to cycles in the environment has oc-
curred through the evolution of a biological timekeeper,
a true temperature-compensated oscillator providing
temporal information at all levels of physiology and be-
havior [1]. Thorough investigation of these oscillators re-
quires that the periodic evolution of the processes in
time be characterized precisely as to the length of the
periods seen, as these are the manifestation of the clock
process [3]. In addition, the relative robustness and regu-
larity of the rhythms is of considerable interest. Numer-
ical samplings of any process that evolves in time, taken
at appropriate intervals, form time series, the stuff and
substance of biological rhythm research.

Analysis of time series may be simply done. In early
work by Biinning on bean plant leaf movements, period-
icity was estimated by measuring peak-to-peak intervals
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on chymographs that registered leaf position [4]. Ana-
lysis technique has progressed considerably since that
time and now offers an array of possibilities for esti-
mates of period length [5]. This paper deals with a very
useful method called Maximum Entropy Spectral Ana-
lysis, or MESA, developed by John Parker Burg in the
1960s in answer to shortcomings of the principal ana-
lysis technique up to that time, Fourier analysis [6-8].
We will first discuss Fourier analysis, noting the prob-
lems that MESA was developed to fix and how they can
be circumvented with MESA. We will pay attention to
the theoretical underpinnings so that this popular
method will not be a “black box” and will show the ba-
sics of how the spectrum is computed. Given that the
biologist necessarily works with time series that are ei-
ther inherently irregular or contain major trends, tools
that can ameliorate these problems when used in con-
junction with MESA will be introduced and examples of
their benefits discussed.

Biological rhythm data

Circadian rhythms are studied in systems ranging from
intracellular fluorescence to complex behaviors such as
running wheel activity; data acquisition and format vary
accordingly. For example, when studying the activity of
an enzyme, the variable may be continuous and an ap-
propriate sampling interval must be chosen. This must
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be rapid enough to avoid “aliasing” in the periodicity re-
gion of interest. This occurs when the sampling interval
is longer than the period being recorded and is famously
seen in old western movies when the spokes of wagon
wheels seem to be going backwards; sampling frequency
must be no less than twice the frequency of the cyclic
process of interest. This constraint is the Nyquist or
foldover frequency [9]. Faster sampling is normal, how-
ever, to ensure no detail is lost and that accurate period
estimates result. There are two important things to con-
sider. The first, is resolution, which is the ability to sep-
arate two frequencies as being distinct, for example a
24-h circadian peak with a 24.8-h lunar daily peak. This
is equivalent to optical resolution, in which two objects
in an image can be separable [10]. Resolution is theoret-
ically limited by the number of cycles in the data set, or
in optics, by the diameter of the lens. A completely sep-
arate problem is the ability to discern a periodic signal
in noise. This is sensitivity, and both are important.

Biological rhythm data are commonly not continuous
and consist of unary events unlike the record left on
a kymograph by a bean plant. Here, other constraints
begin to play a role. Running wheel activity in mammals
and the breaking of an infrared light beam by Drosophila
are useful examples. Here, individual events occur, and
are summed across arbitrary intervals or “bins”. Bin size
affects the output of time series analysis and this effect
can be profound when bin size is too small (Review:
[11]). Bin sizes of 10 min up to an hour are common in
rhythms work.
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For the purposes of illustration of the techniques being
discussed, we will analyze a simulated data set. This is
useful in this sort of discussion, as one may know pre-
cisely what the parameters of the signal are. The series
considered here is a 23-h square wave with 20% white
noise added consisting of 336 values produced at half
hour intervals for 7 days using our own software. I chose
a square wave as it is important to show that any ana-
lysis be effective for waveforms deviating markedly from
the badly overused sinusoid. A simple time plot of the
data is shown in Figure 1.

The autocovariance and autocorrelation functions

Given a particular signal, even if it appears clearly rhyth-
mic in a simple time plot, it is important that an object-
ive statistical test be employed to determine if significant
periodicity is present. Such a robust test is autocorrel-
ation analysis [5]. In this analysis, the time series is ini-
tially lined up with itself in register and correlation
analysis is applied yielding the coefficient, r. In this case,
no matter what the signal looks like, correspondence is
one to one and r = 1. The two series are then set out of
register or “lagged” by one interval. The result is a dec-
rement in r. The drop depends on the series; if it is a
noiseless sinusoid, the change will initially be small, but
if it is white noise, the drop will be very large, since the
value of any given point has no relation whatsoever to
any other point either near or far in time. Lagging pro-
ceeds one interval at a time up to about N/3. The
process is usually limited to this point since the power
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Figure 1 An artificially produced time series with an arbitrary maximum amplitude of one. [t is a square wave with 20% white noise

100 120 140 160 180




Dowse Journal of Circadian Rhythms 2013, 11:6
http://www.jcircadianrhythms.com/content/11/1/6

of the test is reduced with the decrement of each pair of
lags off the ends of the series. r values are plotted as a
function of the lag yielding the autocorrelogram func-
tion. In a rhythmic series, r will continue to decline, be-
coming negative and reaching a minimum when the
peaks and valleys in the two series are out of phase by
one half cycle. A second positive peak will occur when
the peaks and valleys are back in phase, but one cycle
out of register. The envelope of decay of the autocor-
relation peaks is a function of the regularity in the
series and this can provide a useful way of character-
izing the regularity in the signal, as will be discussed below
(Reviews: [5,12]).

When computing the correlation coefficient, the out-
put is normalized by dividing by the variance of the
complete data set, but this need not be so and the out-
put is then “covariance”, or the autocovariance function
[5]. Autocorrelation is commonly employed, as it allows
comparisons among wide-ranging experiments.

The autocorrelation function also yields a valuable way
to quantify the regularity of the signal both in terms of
variation in period and the presence of noise. The height
of the third peak in this function, counting the peak at
lag zero as one, is taken as the Rhythmicity Index, or RI.
This value relies on the decay of the envelope of the
function and is normally distributed so it may be used in
statistical analyses (review: [12]). The RI of the test sig-
nal is 0.697.

It is useful to have a formal criterion for the signifi-
cance of rhythmicity in data. The 95% confidence inter-
val for testing the significance of a given peak in the
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autocorrelogram is 2/VN [5]. Plus and minus confidence
intervals are commonly plotted as flat lines, the decre-
ment in N as values are lost being ignored (see above
discussion). Repeated peaks equaling or exceeding the
confidence interval are usually taken to imply significant
rhythmicity, but there is room for subjective interpret-
ation [5,12]. Figure 2 shows the autocorrelation function
for the test data set depicted in Figure 1. Since the lag-
ging can be done in either direction, Lag 0, where r = 1
is at the center and the function is mirrored to the left
as well. This view can make visual interpretation easier.

Fourier analysis

Beginning in the late 19™ century, the process of produ-
cing a spectrum from digital time series was largely ac-
complished by Fourier analysis. Fourier showed that any
function showing certain minimal properties called the
“Dirichlet Conditions” can be approximated by a har-
monic series of orthogonal sine and cosine terms [6,7].
The series must have a finite number of maxima and
minima, be defined at all points and not have an infinite
number of discontinuities, conditions met by most data
encountered in biology [12]. Here we take a function f(t)
and approximate it with a Fourier series:

f(£)=ag/2 + assint + apsin2¢ + ...bycost + bycos2t + ...
(1)
If our function consists of an ordered set of values x(¢),

then the “power” in the series is the ensemble average of
the squared values. If the mean is zero, this is variance.
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Figure 2 This is the autocorrelation of the data depicted in Figure 1. Note the height of the third peak, which is the Rl and equals 0.697.
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The Fourier transform is an extension of a fit of the Fourier
series and has the property that the coefficients approxi-
mate the spectrum of the power, meaning the power at
each frequency for which a computation can be made
(review: [5]). For a continuous series, we have:

F(o) = J f(t)e ™ dt 2)

The exponential function consolidates the sine and co-
sine terms. F(w) is the spectrum of the function, with @
being the angular velocity, or 2nf, where f is frequency.
This process was carefully described by Schuster [13]
and he termed it the “periodogram” of the function. This
procedure should not be confused with the Whittaker-
Robinson algorithm [14], improperly given the same
name, which was largely discredited by Kendall on formal
mathematical grounds [15]. (See [12] for further discus-
sions and examples). Figure 3 depicts the Whitaker-
Robinson “periodogram” for the data set.

Fourier analysis has undergone considerable develop-
ment and sees a great deal of use in many fields, with
chronobiology prominent among them; it has done yeo-
man service. If the spectrum is calculated directly from
data sampled at intervals, it is termed the Discrete Fourier
Transform or DFT. Fourier spectra are seldom computed
directly from the raw data however, rather they are pro-
duced from either the autocovariance or autocorrelation
functions. One argument for using the autocovariance
function is that the output is equivalent to partitioning the
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variance in the signal by frequency and the area under the
curve is the power (review: [5]). Figure 4 depicts the DFT
of the test data set which is the most basic way to visualize
the process. The period is reported as 22.4 h which con-
trasts with the known value of 23. The reason for this dis-
crepancy is discussed below.

Compromises inherent in Fourier analysis

Since the autcovariance and autocorrelation functions
lose power with each pair of points lost, usually no
more than one third of the data are used to compute
correlation coefficients, adversely affecting the potential
resolution in the spectrum. To alleviate this, the rest of
the function is padded out with zeroes. This is an out-
right falsification of data points not in evidence, since
there is no reason to suspect these data points would
all be zeroes. An added problem occurs at the point
where the zeroes abruptly start, since this abrupt dis-
continuity will cause artifactual peaks in the spectrum
called “side lobes” owing to the Gibbs phenomenon
[16]. To correct for this, the real data are blended into
the zeros to soften the transition. Here, yet more actual
data must be altered to allow for side lobe suppression.
One further development that exacerbates these com-
promises is the Fast Fourier Transform, or FFT. In this
algorithm, computational efficiency, and concomitantly
speed of calculation, are increased by constraining the
input series to consist of 2~ data points. Here again,
the chances of a data set containing an integer power of
2 points are slim, and again, zeroes are added to pad
the series out (Review [16]).
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Figure 3 This is the so-called Whitaker-Robinson “periodogram”, which is not the same as the true periodogramg of Schuster.
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Figure 4 The Discrete Fourier Transform of the test time series. The period is calculated to be 22.4. Note in particular the paucity of spectral
estimates in the crucial range between 20 and 30 hours. This would normally be corrected in more advanced Fourier Transform algorithms, but
at a cost (see text).
useful in the short, noisy time series typical in biological

Further data corruption can occur when tighter spacing
of spectral estimates is required. If the series is long,
consisting of multiple cycles, this is usually not a problem.
However, when short data sets are at hand, as is commonly
the case with circadian rhythm work, there will be few cy-
cles available. Fourier analysis is based on harmonics and
these are constrained. In practice, this means that the spa-

cing between estimates can be very wide. For a one-week

long experiment with data sampled at half hour intervals

(as in the test data) and analyzed using a simple DFT, spec-

tral estimates are produced only for 22.4 and 24 h in the

critical interval between 22 and 25 h. This leaves enormous
gaps with little chance that the single estimate at 22.4 is

even remotely close to the true period which is 23.0 h.

Once again, it is straightforward to tighten up the interval
between estimates, but once again, zeroes are added with
further problems in using false data points for which there

is no justification [16].

Maximum entropy spectral analysis

systems [12,19,20].
The linchpin of this powerful technique is stochastic

modeling. Time series evolve in time according to prob-
abilistic laws and there are a number of models that can
underlie such processes. One example is an autoregressive
(AR) function (Review: [5]). The assumption is that the sys-
tem moves forward in time as a function of previous values
and a random noise component. The simplest example is a

Markov process:
Xt = aXt_l + Zt' (3)
Where t is time, a is a coefficient derived from the data
and Z, is white noise [5]. This simplest process may be ex-
tended by going backwards in time to earlier and earlier
values, with each weighted by a coefficient derived from

the known observed values [5]:

X¢ = aXe1 +bXeo + . + X + Ze (4)

and, again, a, b, c,... are the model’s coefficients and p is

In the late 1960s, John Parker Burg developed a new
method for producing a spectrum that tackles these
problems [17,18]. It initially found acceptance in astro-
physics and quickly spread to other fields. It began to be
used for circadian rhythm work in the 1980s and is an
excellent choice for a wide range of biological time series.
This technique is called “Maximum Entropy Spectral
Analysis” (MESA) [16-18]. MESA delivers the highest pos-
sible resolution, while eliminating side lobe problems. It is
also extremely sensitive, as defined above. It is particularly

the order of the filter. These coefficients form the predic-
tion error filter (PEF) [21]. Crucially, it is possible to use
the model to predict future values based on what is known
of all the past values. In the case at hand, the analysis is
functionally extending the autocorrelation function out to
the needed number of values by prediction from those that
can be reliably estimated [16]. Entropy, in information the-
ory, is equivalent to ignorance. If one can formally calculate
estimates that maximize ignorance, this means these values
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are the most honest based on what is known from data in
hand and this is demonstrated through the calculus of vari-
ations [16-18]. A pile of zeros certainly does not fit this cri-
terion. The spectrum is constructed from the coefficients
as follows [17,18]:

P
S(w) = P/ I—Z are
k=1

Where: S(w) is spectral power as a function of angular
velocity (see above), P is the power passed by the PEF, p is
the order of the PEF and 4 is the set of PEF coefficients.

The algorithm commonly used by us and others calcu-
lates the filter in an iterative fashion and is based on the
work of Anderson [22]. Each iteration extends the AR
model by one. The number of coefficients in the predic-
tion error filter employed to construct the spectrum is
hence not fixed and requires some care in its choice. If a
number that is too low is chosen, resolution and import-
ant detail can be lost. On the other side of the coin, if
the number of coefficients is run up too high, there may
be spurious peaks [21]. An objective method has been
developed using the methods of Akaike [21], based on
information theory. The filter length chosen is consistent
with the most amount useful information that is being
extracted as each iteration extends the length of the fil-
ter. This is used in the MESA software employed in our
work, but we also commonly set a minimum filter length
of about N/4 for biological rhythm analyses to ensure
adequate representation of any long period cycles in the
presence of noise, which can be considerable. N/3 is a
good safe maximum [5,21].

MESA has proven itself superior to ordinary Fourier
analysis as it does not produce artifacts from the various
manipulations needed absent a model for the function
and both resolution and sidelobe suppression are super-
ior to standard Fourier analysis [16,23]. To show the dif-
ference between Fourier analysis and MESA in one
critical area, it was noted above that the possible esti-
mates that can be computed for period in Fourier ana-
lysis is constrained by the fact that these estimates can
only be calculated for fixed values that are harmonics
based on the length of the time series at hand. Longer
series mean more tightly spaced estimates and this can
be “faked” by adding zeros. MESA does not need to do
this. Since the spectrum is extracted from an AR model,
the spacing can be narrowed to any needed level. As an
example, for the time series we have been working with,
we have one week’s worth of data, sampled at half hour
intervals. Note that shortening the bin size will have no
effect on the spacing of the samples. Figure 5 shows the
MESA for the test data set with the number of estimates
increased by a factor of 32. Unlike the DFT, which had
only 2 estimates in the interval between 22 and 25 h,

2

(5)
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MESA produced 60. Increasing MESA coefficients could
go as high as needed, with the downside being a growing
number of values that need plotting. Here 32X is more
than sufficient to tease out a good estimate.

Data conditioning

Biological signals can be notoriously non-stationary
and noisy. This variation can take the form of linear or
nonlinear trends in amplitude, variations in period and the
waveform. As with any signal analysis system, MESA out-
put can be improved by conditioning the signal. It should
be noted, however, that MESA is robust in the face of such
problems from the start. Incorporated into our MESA pro-
gram is a detrending step which fits a line by regression
and subtracts it. This eliminates linear trend and removes
the mean. Mean removal is highly recommended, as this
DC component can obscure the rhythmic one if it is exces-
sive [12]. Removal of nonlinear trend can be accomplished
by high-pass filtering by numerous methods and will not
be discussed here as it is beyond the scope of this work.
Low pass filtering to remove high frequency noise, how-
ever, is of considerable interest and is commonly done in
preparation for spectral analysis (Review: [12,24]).

We have had excellent success with Butterworth re-
cursive filters [9,12,24]. They are considered recursive
because in addition to incorporating the original time
series data into the moving filtering process, previously
filtered values are used as well. Butterworth filters are
highly accurate and reliable, and the cutoff frequency is
sharp [9]. In Figure 6, the artificial test signal depicted in
Figure 1 is shown after filtering with a two-pole low-
pass Butterworth filter with a ~3 dB amplitude rolloff at
the specified period of 4 h. The number of poles reflects
the depth of the recursion [9]. The filter equation show-
ing the recursion is:

Y = (X¢ 42X + X2 + AY; + BY,,)/C (6)

Where X, is the original data series and Y, is the out-
put series. A and B are the filter coefficients: A = 9.656
and B = -3.4142. C is the “gain” or amplitude change of
the filter and equals 10.2426. See [9,12,24] for a more
detailed description of this filter. Owing to the recursion
there is a 4-h phase delay in this example and this needs
either to be made clear when the data are plotted or ac-
tually reversed. Reversal can easily be accomplished by
running the filter in reverse. Since it is highly inadvisable
to run a filter more than once to achieve additional
smoothing before spectral analysis, as this will result in
artifact [9], this reversal must only be done for display of
simple plots for visualizing data. A single pass with the
phase change is not an issue for MESA, since the attend-
ant phase shift is of no consequence in this context. A
second reversing pass with this filter actually resulted in
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Figure 5 This is the MESA spectrum with the coefficients upped to 32X. The period reported is 22.88, compared to the known input of 23.0.
The tiny discrepancy is likely a result of the 20% added noise in the signal.
A

a widening of the MESA peak (data not shown). After fil- MESA is useful for an extremely wide range of living os-

tering, the RI (see above) is improved from 0.697 to 0.715. cillatory processes. It was instrumental in discovering
the presence of ultradian rhythms in Drosophila loco-
MESA at work motor activity rhythms early on, most remarkably in flies

MESA has seen notable success since first being im-  bearing the per” and per mutations, which have no overt
plemented for use in biological rhythms in the 1980s. circadian periodicity [25,26]. These ultradian rhythms
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Figure 6 This is the original data set after being filtered twice with a Butterworth recursive digital filter. The second pass reverses the
filter's introduction of a four-hour phase delay owing to its recursive nature.
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have been central in a competing hypothesis describing
the mechanism of the circadian clock [26,27]. It has
been used extensively in circadian rhythm work since
that time. Given its superior resolving power, it settled
an old dispute about the presence of lunar rhythmicity
in physiological activity in marine organisms [9]. When
applied in conjunction with powerful trend removal
techniques, it was instrumental in teasing out the role
of the gene cryptochrome (cry) in the fly clock system.
Luciferase activity was monitored in antennae bearing
either tim-luc or per-luc constructs and a central role
for CRY protein in the peripheral antennal clock was
established [28,29]. Ultradian and circadian rhythms
were examined in premature infants (24—29 weeks) prior
to their developing robust circadian periodicity enabling
inferences on prenatal periodicity in normal pregnancies
[30]. A cryptic human core body temperature of about
one hour was elucidated [31]. Electroencephalography
has yielded considerable information on ultradian period-
icity in rats with MESA analysis combined with aggres-
sive filtering enabling an incorporation of these high-
frequency rhythms into models of sleep-wake dynamics
[32]. A genetic component in strain differences among
normal mice was discerned when locomotor activity was
investigated with MESA, revealing robust ultradian com-
ponents [33]. The presence of an endogenous vertical mi-
gration rhythm in Antarctic krill was verified [34]. Work
on the cardiac pacemaker of the fly heart has benefitted
from the use of MESA for measuring heart rate [35,36].
When combined with a novel preliminary Fourier treat-
ment to alter the sampling structure, the presence of
rhythmicity in the spacing of pulses in the Drosophila
mating song was confirmed and it was shown to be under
the control of the period gene [37].

In summary, Maximum Entropy Spectral Analysis has
proven itself to be a highly useful and versatile tool for
the investigation of periodic biological phenomena.

Technical note

A full explanation of the mathematics underlying MESA
and the ways in which algorithms have been implemented
is beyond the scope of this paper. For those wishing to
explore these topics in detail, the author recommends the
following: For a good general introduction to the basic
logic of MESA see Able’s review [16]; Burg’s original pa-
pers are the next step in seeing how the technique devel-
oped [17,18]; the very thorough paper by Ulrych and
Bishop [21] should be sufficient to answer almost any
mathematical question on the procedure and the algo-
rithm used in our version of the technique, which we
implemented in FORTRAN, is found in Andersen’s contri-
bution [22]. Some of these papers, notably those of Burg
himself, are difficult to locate. The compendium edited by
D.G. Childers entitled “Modern Spectrum Analysis” (1978,
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Wiley) has all these recommended papers and many more
that are on point.

All software used in this lab, including the FORTRAN
source code, is available free of charge from the author:
dowse@maine.edu. A step by step annotated guide in its
use has been published by this author [38].
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