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Abstract

Background: Variation in circadian rhythms and nocturnality may, hypothetically, be related to or
independent of genetic variation in photoperiodic mediation of seasonal changes in physiology and
behavior. We hypothesized that strain variation in photoperiodism between photoperiodic F344
rats and nonphotoperiodic Harlan Sprague Dawley (HSD) rats might be caused by underlying
variation in clock function. We predicted that HSD rats would have more activity during the day
or subjective day, longer free-running rhythms, poor entrainment to short day length, and shorter
duration of activity, traits that have been associated with nonphotoperiodism in other laboratory
rodent species, relative to F344 rats. An alternative hypothesis, that differences are due to variation
in melatonin secretion or responses to melatonin, predicts either no such differences or

inconsistent combinations of differences.

Methods: We tested these predictions by examining activity rhythms of young male F344 and HSD
rats given access to running wheels in constant dark (DD), short day length (L8:D16; SD), and long
day length (L16:D8; LD). We compared nocturnality (the proportion of activity during night or
subjective night), duration of activity (alpha), activity onset and offset, phase angle of entrainment,

and free running rhythms (tau) of F344 and HSD rats.

Results: HSD rats had significantly greater activity during the day, were sometimes arrhythmic in
DD, and had significantly longer tau than F344 rats, consistent with predictions. However, HSD rats
had significantly longer alpha than F344 rats and both strains entrained to SD, inconsistent with

predictions.

Conclusion: The ability of HSD rats to entrain to SD, combined with longer alpha than F344 rats,
suggests that the circadian system of HSD rats responds correctly to SD. These data offer best
support for the alternative hypothesis, that differences in photoresponsiveness between F344 and
HSD rats are caused by non-circadian differences in melatonin secretion or the response to

melatonin.
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Background

Precise timing of both circadian and seasonal changes in
physiology and behavior are important for animals [1].
Biologically appropriate daily and seasonal timing
depends upon normal and precise function of the circa-
dian system [2-4]. Genetic variation for circadian clock
function can affect circadian physiological rhythms, daily
cyclical behaviors, onset and offset of activity, melatonin
rhythms, and regulation of seasonal physiological
changes in energetics and reproduction [4-6]. Such
genetic variation may affect animal and human health
and function through effects on biological rhythms and
related physiological systems [4,7-9]. Particularly impor-
tant for the circadian system may be pleiotropic variation
that could cause correlated variation in more than one
trait, thereby affecting multiple body systems [e.g., exam-
ples of gene knockout studies reviewed in [4]].

Studies on laboratory colonies of hamsters have described
pleiotropic genetic variation in the circadian clock that
also causes variation in photoperiodism [10-14]. In Sibe-
rian hamsters, for example, genetically nonphotoperiodic
individuals in short photoperiod have a delayed, lower
amplitude nocturnal rise in pineal melatonin, a 4.5 hour
delay in the onset of nightly activity, a longer free-running
activity period (tau), a shorter duration of running wheel
activity (alpha), and some nonphotoperiodic individuals
are arrhythmic, relative to photoperiodic individuals
[10,11]. In tau mutant Syrian hamsters, the free running
rhythm is too short for proper entrainment to a short pho-
toperiod, leading to an inability to produce a short pho-
toperiod melatonin pattern [15]. In contrast, studies on
natural populations of rodents have reported genetic var-
iation in seasonal photoperiodic traits which have not
been found to be related to circadian variation [16-20],
suggesting independent sources of variation. It is not clear
how commonly variation in photoperiodic seasonality is
correlated with circadian rthythms, and additional models
that relate genetic variation in circadian and seasonal
function would be useful.

Strains of laboratory rats vary both in circadian rhythms
[21-25] and in photoperiodic responses that include
reproduction, food intake, and body mass [26-30]. The
F344/NHsd strain of rats suppresses reproduction, food
intake, and somatic growth in short photoperiods, while
Harlan Sprague Dawley (HSD) rats do not. F344 rats are
becoming a model for mechanisms of photoresponsive-
ness [31], and may be useful models for the study of cor-
related genetic variation in rhythms, regulation of
appetite and body mass, and reproduction. A recent com-
parison of the thythm of excretion of the major metabo-
lite of melatonin, 6-sulfatoxymelatonin, between
photoperiodic F344 rats and nonphotoperiodic HSD rats
suggests that both strains have long duration melatonin
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secretion in short photoperiod and short duration mela-
tonin secretion in long photoperiod [32]. Thus, both pho-
toresponsive F344 and nonphotoresponsive HSD rats
were similar in pattern of melatonin production to pho-
toresponsive rather than nonphotoresponsive Siberian
hamsters [10]. However, HSD rats excreted only about
half as much 6-sulfatoxymelatonin per unit body mass as
F344 rats, and some individual HSD rats had little or no
nocturnal rise in excretion, similar to nonphotorespon-
sive Siberian hamsters [10].

For this study, a companion study to Price et al. [32], we
tested two competing hypotheses. One hypothesis is that
differences in photoresponsiveness between F344 and
HSD rats are caused by differences in circadian clock func-
tion and/or clock outputs cause differences in photore-
sponsiveness. A competing hypothesis is that differences
in photoresponsiveness are caused by differences at the
level of melatonin secretion and responses to melatonin
[32], rather than by differences in clock function. We
tested for circadian differences between young male F344
and young male HSD rats by measuring running wheel
activity in short photoperiod, long photoperiod, and con-
stant dark (DD) to assess circadian traits and the degree of
nocturnality. Intrinsic tendencies for nocturnality may be
most apparent in DD, when individuals must rely entirely
on their circadian clock to indicate subjective night and
day. Circadian differences could occur in short or long
photoperiods as well, though direct effects of light and
dark might mask effects of the endogenous circadian
rhythm on nocturnality.

Methods

Under the hypothesis that differences in clock function
cause nonphotoresponsiveness in HSD rats, we predicted
that HSD rats would be more likely to be arrhythmic or
have poorly defined circadian rhythms of activity, because
a damaged or altered clock or clock output pathways that
result in an inability to track time-of-day or to pass time-
of-day information to other areas of the brain would
result in poor circadian regulation of activity. For similar
reasons, we predicted that HSD rats would have lower
nocturnality than F344 rats because HSD rats would
assess day and night inaccurately. Low nocturnality in
HSD rats might be most extreme in constant dark, when
light cues are not available to mask circadian outputs. In
addition, if HSD rats were found to be able to entrain
activity to the dark period at least in long photoperiod, we
predicted a free-running rhythm greater than 24 hours in
HSD rats (which results in entrainment even if there is a
deficit in the phase delay portion of the phase response
curve) along with inability to lengthen the activity period
when moved from long days to short days (which might
result from inability to properly phase-delay in response
to short photoperiod). This prediction follows Puchalski
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and Lynch [11], who used the nonparametric theory of
entrainment [33] in developing a model for nonrespon-
siveness of Siberian hamsters.

The study followed international standards for animal
care and welfare, and was approved by the institutional
animal care and use committee at the College of William
and Mary (IACUC 0018).

Experiment I: Comparison of HSD to F344 male rats in LD
This experiment was designed to compare circadian traits
and nocturnality in a photoperiod treatment with light
cues that would not normally trigger photoperiodic
responses. Activity patterns of young male F344/NHsd
rats (breeders from Harlan, Indianapolis, Indiana) and
HSD rats (Hsd:Sprague Dawley; breeders from Harlan,
Indianapolis, Indiana) were compared in long days (LD),
16 L: 8 D with lights on at 0500 EST (N = 15 F344 rats and
18 HSD rats). Rats were only tested during the four weeks
after weaning in order to match the period when F344 rats
and other strains are known to show variation in pho-
toperiodic responses [27,28,30,34]. In order to control for
potential changes related to age, each individual rat was
tested in only one photoperiod treatment.

All rats were gestated and raised in LD (16 L: 8 D with
lights on at 0500 EST) prior to weaning at 23 + 2 days of
age. They were then transferred to individual cages with
activity wheels (Harvard Apparatus, Holliston, Massachu-
setts, Rodent Activity Wheel and Cage, Catalog No. 60-
1943) and placed in environmental and photoperiod
chambers (Revco, Asheville, North Carolina) in groups of
up to 12 rats/chamber. Magnetic switches on the running
wheels signaled revolutions to an event recorder sending
output in 6-minute data collection periods, or 'bins’, to a
personal computer. Rats were fed a laboratory diet (Har-
lan Teklad LM - 485 Sterilizable Mouse/Rat Diet 7012,
Madison, WI) and tap water ad libitum. Temperature was
maintained at 22.5 + 1°C. Data collection ended after
four weeks + 4 days. The study followed international
standards for animal care and welfare, and was approved
by the institutional animal care and use committee at the
College of William and Mary (IACUC 0018).

Experiment 2: Comparison of HSD to F344 male rats in SD
This experiment was designed to compare circadian traits
and nocturnality in a photoperiod with light cues that
would normally trigger reproductive suppression, reduced
food intake, and slowed somatic growth in a photore-
sponsive rat. Activity patterns of young male F344 and
HSD rats (N = 16 per group) were compared for short days
(SD), 8 L: 16 D with lights on at 0900 EST. Except for the
photoperiod treatment, procedures and data collection
were as in Experiment 1.
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Experiment 3: Comparison of HSD to F344 male rats in DD
This experiment was designed to compare circadian traits
and nocturnality of F344 and HSD rats. Activity patterns
of young male F344 rats were compared with those of
young male HSD rats (N = 10 per group) in constant dark-
ness (DD). Except for the photoperiod treatment, proce-
dures and data collection were as in Experiment 1.

Data Analysis

Data collection and analysis of nocturnality and diurnal-
ity was carried out using a software package, Tau, gener-
ously provided by Roberto Refinetti  http://
www.circadian.org. Wheel revolutions were recorded in 6-
minute bins and plotted as activity records. Preliminary
analyses were conducted to test the effect of removing
bins with small numbers of wheel rotations. Because var-
iation in nocturnality was most apparent without remov-
ing bins, analyses were conducted using all activity. For all
statistical analyses, data were taken only from the last 15
days of activity in order to allow rats to adjust to the treat-
ment photoperiod in SD and DD. For rats in LD, data col-
lection was also restricted to the final 15 days of activity in
order to match ages across all three experiments. The noc-
turnality index is defined here as the ratio of time active in
the night (or subjective night) to the total time active over
24 hours. Thus, individuals that were more active during
the night had a higher nocturnality index. The Tau pro-
gram also calculated the tau (free-running period) by the
chi-square periodogram method for each rat in DD. Phase
angle of entrainment, activity onset, activity offset, and
alpha (duration of activity) were calculated following
methods slightly modified from Majoy and Heideman
[17] and Sullivan and Lynch [35] as described below.

Activity onset was defined as the first bout of running
activity lasting at least two 6-min recording bins that was
preceded by at least 2 hours with no sustained activity
(e.g., activity in no more than one consecutive bin) and
followed by additional activity within the next hour. Eye-
fitted lines were drawn through these daily activity onsets
on an actogram to obtain a mean daily activity onset for
each rat. The activity offset was defined as the end of the
last bout of activity followed by at least 2 hours of no sus-
tained activity. Again, eye-fitted lines were drawn through
the daily offset times on an actogram to obtain a mean oft-
set for each rat. Alpha was defined as the difference
between activity offset and activity onset. Phase angle of
entrainment was defined as the difference between activ-
ity onset and lights off (calculated only in SD and LD pho-
toperiods). Unpaired t-tests were performed to test for
statistical significance between the two strains of rats in
each photoperiod treatment for each circadian parameter.

Mean nocturnality index, tau, phase angle of entrainment,

activity onset, activity offset, and alpha were compared
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between strains in each photoperiod by unpaired t-tests,
with the criteria for statistical significance set at P < 0.05.
Because data were taken in multiple runs, run was
included as a factor in the analyses. Run did not affect sig-
nificance tests, and was not considered further.

Results and discussion

In all three photoperiods, there were strain specific differ-
ences in activity patterns. Representative rhythms from
individual rats with circadian parameters near the means
for their treatment group are shown in Figure 1a-f. Sum-
mary data showing the proportion of rats active in each
hour are presented in Figure 2.

In LD, SD, and DD, F344 rats had higher nocturnality
indices than HSD rats (LD: t = 6.85, p < 0.0001; SD: t =
4.83, p < 0.0001; DD: t = 5.05, p < 0.0001; Figure 3a),
with a higher proportion of their activity during the night
period than HSD rats (Figure 2). In all three photoperiod
treatments, alpha was significantly longer in HSD than in
F344 rats (LD: t = 5.60, p < 0.0001; SD: t = 4.92, p <
0.0001; DD: t = 3.86, p = 0.0005; Figure 3b). There were
differences in activity onset in LD (t = 5.01, p < 0.0001;
Figure 3c) butnotin SD (t=1.12, p = 0.27; Figure 3c), and
differences in activity offset in both LD (t = 4.28, p =
0.0002; Figure 3d) and SD (t = 8.37, p < 0.0001; Figure
3d). There was a significant difference in phase angle of
entrainment in LD (t = 4.95; p < 0.0001; Figure 3e), but
notin SD (t=1.26; p = 0.22; Figure 3e). HSD rats also dis-
played tau longer than 24 h, significantly longer than tau
of F344 rats (t = 3.01; p = 0.0048; Figure 3f).

Overall, HSD rats tended to extend activity into the light
period and also had a higher amount of activity during the
light period than F344 rats (Figures 1, 2, &3). Some HSD
rats had activity spread so evenly through the constant
dark period as to appear nearly arrhythmic (Figure 1g).

Young male HSD and F344 rats differed in multiple circa-
dian parameters of running wheel activity (Figure 3). HSD
rats were more likely to begin and end activity during the
light period or subjective day in SD, LD, and DD. In addi-
tion, HSD rats had more activity during day or subjective
day than F344 rats in all three treatments (Figs. 2 &3a).
Consistent with Aschoff's prediction for more diurnal ani-
mals [36], HSD rats also had tau > 24 hours, significantly
longer than the < 24 hour tau of F344 rats (Figure 3f).
However, HSD rats had significantly longer alpha than
F344 rats (Figure 3b), and both strains entrained well to
SD (Figure 2c¢,d), which is consistent with the hypothesis
that differences in melatonin secretion or responses to
melatonin cause variation in photoresponsiveness, and
inconsistent with the hypothesis that circadian deficits in
HSD rats cause nonphotoresponsiveness.
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It has been proposed that nonphotoperiodism may occur
in Siberian hamsters because they fail to produce an SD
pattern of melatonin secretion due to a failure to integrate
photoperiodic information by the circadian system [10].
The cause of this failure was associated with a long-dura-
tion tau (24.04 +/- 0.05), inability to undergo phase delay
in response to a light pulse, and a failure to increase alpha
or entrain properly in SD. While HSD rats have some sim-
ilarities to nonphotoperiodic Siberian hamsters, the
results are not identical. HSD rats have relatively low
amplitude 6-sulfatoxymelatonin excretion patterns when
adjusted for body mass [32] and a long duration tau
(24.05 +/- 0.02; Figure 3f), similar to nonphotoperiodic
Siberian hamsters [10,11]. However, HSD rats produce 6-
sulfatoxymelatonin excretion rhythms that adjust to night
length and are similar to those of F344 rats in SD [32], and
HSD rats successfully decompress activity to a long-dura-
tion pattern when transferred from LD to SD (Figure 3b).
We have not tested directly the ability of HSD rats to phase
delay, but successful entrainment to SD suggests that HSD
rats have the ability to phase delay to achieve entrainment
to SD. Thus, while HSD rats show some similarities to
nonphotoperiodic Siberian hamsters, the evidence from
this study, together with results of Price et al. [32], sug-
gests that the circadian system of HSD rats is able to
respond appropriately to photoperiodic information (this
study) to cause a short-day melatonin secretion pattern
[32], but HSD rats are unable to respond reproductively to
a short-day melatonin pattern [32].

In combination with the companion study [32], our
results support the hypothesis that differences in how
F344 and HSD rats secrete and/or respond to melatonin
are responsible for differences in photoresponsiveness.
We found significant differences between strains in circa-
dian aspects of wheel running, and these differences indi-
cate that HSD rats tend to have more activity during the
day, have a greater tendency toward arrhythmia, and dif-
fer in some circadian parameters from F344 rats. How-
ever, the differences reported here in circadian parameters
and nocturnality do not prevent similar timing of 6-sulfa-
toxymelatonin excretion rhythms in F344 and HSD, albeit
potentially lower in amplitude or even arrhythmic in HSD
rats [32]. Rats are normally nocturnal [e.g., [22,24]], and
our results suggest that F344 rats have the more species-
typical pattern of strong nocturnality, while HSD rats dif-
fer from that pattern. Variation in activity and 6-sulfa-
toxymelatonin excretion has also been reported between
other strains of rats [24], but our results suggest there is no
necessary relationship between photoresponsiveness and
circadian rhythm characteristics in rats. For example,
some of the strain variation we report in wheel running
activity might be related to restlessness, fearfulness, or
intrinsic rewards of wheel running that differ among rat
strains.
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(a Representative F344 #1 in LD with (b) Representative HSD #11 in LD with
nocturnality index of 0.83

nocturnality index of 0.97

( C Representative F344 #10 in SD with ( d) Representative HSD #1 in SD with
nocturnallty index of 0.99 nocturnahty index of 0.95

6 6
11 1
16 e 16
21 ;. = 21
26 = 26
31 = = 31
36 = 36

(e Representative F344 #15 in DD with Representative HSD #3 in DD with
nocturnality index of 0.95 (f) nocturnallty index of 0.86

) Arrhythmlc HSD rat # 14 in DD

(g

Figure |
Representative actograms of F344 and HSD rats. (a) F344 rat in LD, (b) HSD rat in LD, (c) F344 rat in SD, (d) HSD rat
in SD, (e) F344 rat in DD, (f), HSD rat in DD, (g) arrhythmic HSD rat in DD.
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HSD

Light

[ i

(Constant Dark)

Proportion of rats active in relation to time of day (Mean +/- SEM). (a) F344 in LD, (b) HSD in LD, (c) F344 in SD, (d)
HSD in SD, (e) F344 in constant dark, and (f) HSD in constant dark. The profiles show the proportion of individual rats active
on the running wheel during each hour, averaged over the final four days of activity monitoring. For rats in constant dark, activ-
ity was fit to the 24 hour profile by placing the zero time point at the midpoint of activity.
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Circadian parameters for F344 (F) and HSD (H) rats in LD, SD, and DD (Mean +/- SEM). (a) nocturnality index, (b)
alpha, the duration of activity, (c) activity onset, with dashed lines indicating the time of lights off, (d) activity offset, with dashed
lines indicating the time of lights on, (e) phase angle of entrainment, and (f) tau, the free-running rhythm in DD. Asterisks indi-

cate significant differences between F344 and HSD rats.
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Conclusion

In laboratory populations of rodents, circadian variation
has been reported to be a cause of variation in responsive-
ness to photoperiod [10-14]. In contrast, in HSD and
F344 rats as well as in wild-source populations of mam-
mals, variation in photoresponsiveness may not be linked
to variation in circadian characteristics [16-20]. Uncou-
pling of the circadian system and seasonal rhythms can be
caused experimentally [37] or may occur naturally during
part of the year in polar regions [38]. Natural populations
may be under strong selection against circadian mutations
that have pleiotropic effects on traits such as seasonality.
In these natural populations, mutations that act specifi-
cally on outputs, such as melatonin sensitivity of the
reproductive axis, pelage, body mass or feeding, are more
likely to be adaptive or neutral. In contrast, laboratory
populations are not under selection to eliminate muta-
tions that alter circadian clock function in ways that affect
multiple output systems, including seasonal photoperi-
odic responses [e.g., [15]], which may explain differences
reported previously between wild-source and laboratory
populations.

The pattern of differences in photoresponsiveness
between HSD and F344 rats, which appear to have little
relationship to differences in circadian organization, may
indicate greater similarity to wild populations containing
natural genetic variation in photoresponsiveness. How-
ever, we cannot entirely rule out the possibility that HSD
rats are nonphotoresponsive due to differences from F344
rats in circadian organization. Knock-out studies of single
circadian clock genes in mice have been reported to cause
changes in rhythm parameters, reduced nocturnality or
loss of rhythmicity, and also changes in reproductive traits
[4]. Nevertheless, it appears more likely that differences
between HSD and F344 rats in running wheel activity
rhythms, nocturnality, and reproductive photorespon-
siveness are merely incidentally correlated. Differences in
activity and nocturnality may be caused by subtle differ-
ences in circadian organization, while differences in pho-
toresponsiveness are likely due to an independent trait,
insensitivity of the reproductive axis, body mass, and food
intake to a short-day melatonin pattern [32].
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